Gaikwad Priya G, Tiwari Nidhi, Kamat Rajanish K, Gilani Sadaf Jamal, Mane Sagar M, Lee Jaewoong, Kulkarni Shriniwas B
Material Research Laboratory, Department of Physics, The Institute of Science, Dr. Homi Bhabha State University, Mumbai 400032, Maharashtra, India.
Faculty of Physics, Thakur College of Engineering and Technology, Kandivali (E), Mumbai 400101, Maharashtra, India.
Micromachines (Basel). 2025 May 28;16(6):645. doi: 10.3390/mi16060645.
The demand for high-performance supercapacitors has driven extensive research into novel electrode materials with superior electrochemical properties. This study explores the supercapacitive behavior of quaternary CuNiCoZnO (CNCZO) films engineered into a three-dimensional (3D) flower-like morphology and developed on versatile substrates, including carbon cloth, stainless steel mesh, and nickel foam. The unique structural design, comprising interconnected nanosheets, enhances the electroactive surface area, facilitates ion diffusion, and improves charge storage capability. The synergistic effect of the multi-metallic composition contributes to remarkable electrochemical characteristics, including high specific capacitance, excellent rate capability, and outstanding cycling stability. Furthermore, the influence of different substrates on the electrochemical performance is systematically investigated to optimize material-substrate interactions. Electrochemical evaluations reveal outstanding specific capacitance values of 2318.5 F/g, 1993.7 F/g, and 2741.3 F/g at 2 mA/cm for CNCZO electrodes on stainless steel mesh, carbon cloth, and nickel foam, respectively, with capacitance retention of 77.3%, 95.7%, and 86.1% over 5000 cycles. Furthermore, a symmetric device of CNCZO@Ni exhibits a peak specific capacitance of 67.7 F/g at a current density of 4 mA/cm, a power density of 717.4 W/kg, and an energy density of 25.6 Wh/kg, maintaining 84.5% stability over 5000 cycles. The straightforward synthesis of CNCZO on multiple substrates presents a promising route for the development of flexible, high-performance energy storage devices.
对高性能超级电容器的需求推动了对具有卓越电化学性能的新型电极材料的广泛研究。本研究探索了设计成三维(3D)花状形态并在包括碳布、不锈钢网和泡沫镍在内的多种基体上制备的四元CuNiCoZnO(CNCZO)薄膜的超级电容行为。由相互连接的纳米片组成的独特结构设计增加了电活性表面积,促进了离子扩散,并提高了电荷存储能力。多金属成分的协同效应有助于实现显著的电化学特性,包括高比电容、优异的倍率性能和出色的循环稳定性。此外,系统研究了不同基体对电化学性能的影响,以优化材料与基体之间的相互作用。电化学评估表明,对于不锈钢网、碳布和泡沫镍上的CNCZO电极,在2 mA/cm时的比电容值分别为2318.5 F/g、1993.7 F/g和2741.3 F/g,在5000次循环后电容保持率分别为77.3%、95.7%和86.1%。此外,CNCZO@Ni对称器件在电流密度为4 mA/cm时的峰值比电容为67.7 F/g,功率密度为717.4 W/kg,能量密度为25.6 Wh/kg,在5000次循环后保持84.5%的稳定性。在多种基体上直接合成CNCZO为开发柔性高性能储能器件提供了一条有前景的途径。