Suppr超能文献

基于数据融合的发现(DAFdiscovery)流程,用于辅助跨多种光谱数据的化合物注释和生物活性化合物发现。

Data Fusion-based Discovery (DAFdiscovery) pipeline to aid compound annotation and bioactive compound discovery across diverse spectral data.

作者信息

Borges Ricardo Moreira, das Neves Costa Fernanda, Chagas Fernanda O, Teixeira Andrew Magno, Yoon Jaewon, Weiss Márcio Barczyszyn, Crnkovic Camila Manoel, Pilon Alan Cesar, Garrido Bruno C, Betancur Luz Adriana, Forero Abel M, Castellanos Leonardo, Ramos Freddy A, Pupo Mônica T, Kuhn Stefan

机构信息

Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Brazil.

Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil.

出版信息

Phytochem Anal. 2023 Jan;34(1):48-55. doi: 10.1002/pca.3178. Epub 2022 Oct 3.

Abstract

INTRODUCTION

Data Fusion-based Discovery (DAFdiscovery) is a pipeline designed to help users combine mass spectrometry (MS), nuclear magnetic resonance (NMR), and bioactivity data in a notebook-based application to accelerate annotation and discovery of bioactive compounds. It applies Statistical Total Correlation Spectroscopy (STOCSY) and Statistical HeteroSpectroscopy (SHY) calculation in their data using an easy-to-follow Jupyter Notebook.

METHOD

Different case studies are presented for benchmarking, and the resultant outputs are shown to aid natural products identification and discovery. The goal is to encourage users to acquire MS and NMR data from their samples (in replicated samples and fractions when available) and to explore their variance to highlight MS features, NMR peaks, and bioactivity that might be correlated to accelerated bioactive compound discovery or for annotation-identification studies.

RESULTS

Different applications were demonstrated using data from different research groups, and it was shown that DAFdiscovery reproduced their findings using a more straightforward method.

CONCLUSION

DAFdiscovery has proven to be a simple-to-use method for different situations where data from different sources are required to be analyzed together.

摘要

引言

基于数据融合的发现(DAFdiscovery)是一种流程,旨在帮助用户在基于笔记本的应用程序中整合质谱(MS)、核磁共振(NMR)和生物活性数据,以加速生物活性化合物的注释和发现。它使用易于理解的Jupyter Notebook在数据中应用统计全相关光谱法(STOCSY)和统计异谱法(SHY)计算。

方法

展示了不同的案例研究以供基准测试,并给出了所得结果以辅助天然产物的鉴定和发现。目的是鼓励用户从其样品中获取MS和NMR数据(如有重复样品和馏分),并探索其差异,以突出可能与加速生物活性化合物发现相关或用于注释鉴定研究的MS特征、NMR峰和生物活性。

结果

使用来自不同研究小组的数据展示了不同的应用,结果表明DAFdiscovery使用更直接的方法重现了他们的发现。

结论

对于需要一起分析来自不同来源数据的不同情况,DAFdiscovery已被证明是一种易于使用的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验