Suppr超能文献

用于可调谐光子器件的热光和电光材料的新兴趋势。

Emerging Trends in Thermo-Optic and Electro-Optic Materials for Tunable Photonic Devices.

作者信息

Butt Muhammad A

机构信息

Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.

出版信息

Materials (Basel). 2025 Jun 13;18(12):2782. doi: 10.3390/ma18122782.

Abstract

Tunable photonic devices are increasingly pivotal in modern optical systems, enabling the dynamic control over light propagation, modulation, and filtering. This review systematically explores two prominent classes of materials, thermo-optic and electro-optic, for their roles in such tunable devices. Thermo-optic materials utilize refractive index changes induced by temperature variations, offering simple implementation and broad material compatibility, although often at the cost of slower response times. In contrast, electro-optic materials, particularly those exhibiting the Pockels and Kerr effects, enable rapid and precise refractive index modulation under electric fields, making them suitable for high-speed applications. The paper discusses the underlying physical mechanisms, material properties, and typical figures of merit for each category, alongside recent advancements in organic, polymeric, and inorganic systems. Furthermore, integrated photonic platforms and emerging hybrid material systems are highlighted for their potential to enhance performance and scalability. By evaluating the tradeoffs in speed, power consumption, and integration complexity, this review identifies key trends and future directions for deploying thermo-optic and electro-optic materials in the next generation tunable photonic devices.

摘要

可调谐光子器件在现代光学系统中日益关键,可实现对光传播、调制和滤波的动态控制。本综述系统地探讨了两类重要材料——热光材料和电光材料——在这类可调谐器件中的作用。热光材料利用温度变化引起的折射率变化,实现起来简单,材料兼容性广,不过响应时间往往较慢。相比之下,电光材料,尤其是那些呈现泡克耳斯效应和克尔效应的材料,能够在电场作用下实现快速精确的折射率调制,适用于高速应用。本文讨论了每类材料的潜在物理机制、材料特性和典型品质因数,以及有机、聚合物和无机系统的最新进展。此外,还强调了集成光子平台和新兴混合材料系统在提高性能和可扩展性方面的潜力。通过评估速度、功耗和集成复杂性方面的权衡,本综述确定了在下一代可调谐光子器件中部署热光材料和电光材料的关键趋势和未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d418/12195116/b21f855c5d1f/materials-18-02782-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验