Suppr超能文献

基于卷积神经网络的超高性能混凝土(UHPC)抗压强度预测

Prediction of Ultra-High-Performance Concrete (UHPC) Compressive Strength Based on Convolutional Neural Networks.

作者信息

Xu Li, Yu Xiaochun, Zhu Chenhui, Wang Ling, Yang Jie

机构信息

Jiangsu Vocational College of Business, Nantong 226000, China.

School of Transportation and Civil Engineering, Nantong University, Nantong 226000, China.

出版信息

Materials (Basel). 2025 Jun 17;18(12):2851. doi: 10.3390/ma18122851.

Abstract

This paper investigates the potential of deep learning in predicting the compressive strength of ultra-high-performance concrete (UHPC) by developing a convolutional neural network (CNN) model with two convolutional layers. The proposed CNN architecture demonstrates capability in accurately predicting UHPC compressive strength from tabular data encompassing various material compositions. Ten input variables were selected, including the cement content, water content, silica fume content, silica powder content, silica sand content, superplasticizer content, and curing parameters. The model was trained and tested on a dataset comprising 219 samples. Experimental results indicated excellent predictive performance, with the CNN achieving a coefficient of determination () of 0.959 on the test set and a mean absolute percentage error (MAPE) of 5.55%, demonstrating both accuracy and stability. Comparative analysis revealed that the CNN's performance was comparable to established machine learning methods like XGBoost ( = 0.961), which are typically more suited for tabular data. Furthermore, SHAP (SHapley Additive exPlanations) analysis confirmed the model's interpretability. These findings collectively suggest that the CNN-based approach shows considerable promise for predicting compressive strength across diverse UHPC formulations.

摘要

本文通过开发一个具有两个卷积层的卷积神经网络(CNN)模型,研究了深度学习在预测超高性能混凝土(UHPC)抗压强度方面的潜力。所提出的CNN架构展示了从包含各种材料成分的表格数据中准确预测UHPC抗压强度的能力。选择了10个输入变量,包括水泥含量、水含量、硅灰含量、硅粉含量、硅砂含量、高效减水剂含量和养护参数。该模型在一个包含219个样本的数据集上进行了训练和测试。实验结果表明该模型具有出色的预测性能,CNN在测试集上的决定系数()为0.959,平均绝对百分比误差(MAPE)为5.55%,显示出准确性和稳定性。对比分析表明,CNN的性能与XGBoost等成熟的机器学习方法相当( = 0.961),这些方法通常更适合处理表格数据。此外,SHAP(SHapley Additive exPlanations)分析证实了该模型的可解释性。这些发现共同表明,基于CNN的方法在预测不同UHPC配方的抗压强度方面具有很大的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/236b/12195391/6232960c085c/materials-18-02851-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验