Suppr超能文献

一种基于分类的血脑屏障模型:一种比较方法。

A Classification-Based Blood-Brain Barrier Model: A Comparative Approach.

作者信息

Saber Ralph, Rihana Sandy

机构信息

Department of Biomedical Engineering, School of Engineering, Holy Spirit University of Kaslik (USEK), Jounieh P.O. Box 446, Lebanon.

Centre de Recherche CHUM, Ecole PolyTechnique Montreal, Montreal, QC H3T 0A3, Canada.

出版信息

Pharmaceuticals (Basel). 2025 May 22;18(6):773. doi: 10.3390/ph18060773.

Abstract

: Drug permeability across the blood-brain barrier (BBB) remains a significant challenge in drug discovery, prompting extensive efforts to develop in silico predictive models. Most existing models rely on molecular descriptors to characterize drug properties. Feature selection algorithms play a crucial role in identifying the most relevant descriptors, thereby enhancing prediction accuracy. : In this study, we compare the effectiveness of sequential feature selection (SFS) and genetic algorithms (GAs) in optimizing descriptor selection for BBB permeability prediction. Five different classifiers were initially trained on a dataset using eight molecular descriptors. Each classifier was then retrained using the descriptors selected by SFS and GA separately. : The results indicate that the GA method outperformed SFS, leading to a higher prediction accuracy (96.23%) when combined with a support vector machine (SVM) classifier. Furthermore, the GA approach, utilizing a fitness function based on classifier performance, consistently improved prediction accuracy across all tested models, whereas SFS showed lower effectiveness. Additionally, this study highlights the critical role of polar surface area in determining drug permeability across the BBB. : These findings suggest that genetic algorithms provide a more robust approach than sequential feature selection for identifying key molecular descriptors in BBB permeability prediction.

摘要

药物透过血脑屏障(BBB)的通透性在药物研发中仍然是一个重大挑战,这促使人们为开发计算机预测模型付出了巨大努力。大多数现有模型依靠分子描述符来表征药物特性。特征选择算法在识别最相关的描述符方面起着关键作用,从而提高预测准确性。

在本研究中,我们比较了顺序特征选择(SFS)和遗传算法(GAs)在优化血脑屏障通透性预测的描述符选择方面的有效性。最初使用八个分子描述符在一个数据集上训练了五种不同的分类器。然后分别使用由SFS和GA选择的描述符对每个分类器进行重新训练。

结果表明,GA方法优于SFS,与支持向量机(SVM)分类器结合时预测准确率更高(96.23%)。此外,GA方法利用基于分类器性能的适应度函数,在所有测试模型中持续提高了预测准确率,而SFS的有效性较低。此外,本研究突出了极性表面积在确定药物透过血脑屏障的通透性方面的关键作用。

这些发现表明,在血脑屏障通透性预测中识别关键分子描述符方面,遗传算法比顺序特征选择提供了一种更强大的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ecb/12196391/843cedd258e9/pharmaceuticals-18-00773-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验