Suppr超能文献

PLASMOpred:一种基于机器学习的网络应用程序,用于预测靶向顶端膜抗原1-棒状体颈部蛋白2入侵复合物的抗疟小分子。

PLASMOpred: A Machine Learning-Based Web Application for Predicting Antimalarial Small Molecules Targeting the Apical Membrane Antigen 1-Rhoptry Neck Protein 2 Invasion Complex.

作者信息

Lamptey Eugene, Oparebea Jessica, Anyaele Gabriel, Ofosu Belinda, Hanson George, Sakyi Patrick O, Agyapong Odame, Amuzu Dominic S Y, Miller Whelton A, Kwofie Samuel K, Mensah-Brown Henrietta Esi

机构信息

West African Center for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana.

Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana.

出版信息

Pharmaceuticals (Basel). 2025 May 23;18(6):776. doi: 10.3390/ph18060776.

Abstract

Falciparum malaria is a major global health concern, affecting more than half of the world's population and causing over half a million deaths annually. Red cell invasion is a crucial step in the parasite's life cycle, where the parasite invade human erythrocytes to sustain infection and ensure survival. Two parasite proteins, Apical Membrane Antigen 1 (AMA-1) and Rhoptry Neck Protein 2 (RON2), are involved in tight junction formation, which is an essential step in parasite invasion of the red blood cell. Targeting the AMA-1 and RON2 interaction with inhibitors halts the formation of the tight junction, thereby preventing parasite invasion, which is detrimental to parasite survival. This study leverages machine learning (ML) to predict potential small molecule inhibitors of the AMA-1-RON2 interaction, providing putative antimalaria compounds for further chemotherapeutic exploration. Data was retrieved from the PubChem database (AID 720542), comprising 364,447 inhibitors and non-inhibitors of the AMA-1-RON2 interaction. The data was processed by computing Morgan fingerprints and divided into training and testing with an 80:20 ratio, and the classes in the training data were balanced using the Synthetic Minority Oversampling Technique. Five ML models developed comprised Random Forest (RF), Gradient Boost Machines (GBMs), CatBoost (CB), AdaBoost (AB) and Support Vector Machine (SVM). The performances of the models were evaluated using accuracy, F1 score, and receiver operating characteristic-area under the curve (ROC-AUC) and validated using held-out data and a y-randomization test. An applicability domain analysis was carried out using the Tanimoto distance with a threshold set at 0.04 to ascertain the sample space where the models predict with confidence. The GBMs model emerged as the best, achieving 89% accuracy and a ROC-AUC of 92%. CB and RF had accuracies of 88% and 87%, and ROC-AUC scores of 93% and 91%, respectively. Experimentally validated inhibitors of the AMA-1-RON2 interaction could serve as starting blocks for the next-generation antimalarial drugs. The models were deployed as a web-based application, known as .

摘要

恶性疟疾是全球主要的健康问题,影响着世界一半以上的人口,每年导致超过50万人死亡。红细胞入侵是疟原虫生命周期中的关键步骤,在此过程中,疟原虫侵入人体红细胞以维持感染并确保存活。两种疟原虫蛋白,顶端膜抗原1(AMA-1)和棒状体颈部蛋白2(RON2),参与紧密连接的形成,这是疟原虫入侵红细胞的关键步骤。用抑制剂靶向AMA-1和RON2的相互作用会阻止紧密连接的形成,从而防止疟原虫入侵,这对疟原虫的存活是有害的。本研究利用机器学习(ML)来预测AMA-1-RON2相互作用的潜在小分子抑制剂,为进一步的化疗探索提供假定的抗疟化合物。数据从PubChem数据库(AID 720542)中检索,包括364,447种AMA-1-RON2相互作用的抑制剂和非抑制剂。通过计算摩根指纹对数据进行处理,并以80:20的比例分为训练集和测试集,使用合成少数类过采样技术对训练数据中的类别进行平衡。开发的五个ML模型包括随机森林(RF)、梯度提升机(GBM)、CatBoost(CB)、AdaBoost(AB)和支持向量机(SVM)。使用准确率、F1分数和曲线下面积的受试者工作特征(ROC-AUC)对模型的性能进行评估,并使用留出的数据和y随机化测试进行验证。使用阈值设置为0.04的Tanimoto距离进行适用性域分析,以确定模型能够自信预测的样本空间。GBM模型表现最佳,准确率达到89%,ROC-AUC为92%。CB和RF的准确率分别为88%和87%,ROC-AUC分数分别为93%和91%。AMA-1-RON2相互作用的实验验证抑制剂可作为下一代抗疟药物的起始原料。这些模型被部署为一个基于网络的应用程序,称为 。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab2e/12195871/7a521ad8971f/pharmaceuticals-18-00776-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验