Suppr超能文献

用于埃博拉病毒药物研发的人工智能、机器学习和大数据

Artificial Intelligence, Machine Learning, and Big Data for Ebola Virus Drug Discovery.

作者信息

Kwofie Samuel K, Adams Joseph, Broni Emmanuel, Enninful Kweku S, Agoni Clement, Soliman Mahmoud E S, Wilson Michael D

机构信息

Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 77, Ghana.

West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra P.O. Box LG 54, Ghana.

出版信息

Pharmaceuticals (Basel). 2023 Feb 21;16(3):332. doi: 10.3390/ph16030332.

Abstract

The effect of Ebola virus disease (EVD) is fatal and devastating, necessitating several efforts to identify potent biotherapeutic molecules. This review seeks to provide perspectives on complementing existing work on Ebola virus (EBOV) by discussing the role of machine learning (ML) techniques in the prediction of small molecule inhibitors of EBOV. Different ML algorithms have been used to predict anti-EBOV compounds, including Bayesian, support vector machine, and random forest algorithms, which present strong models with credible outcomes. The use of deep learning models for predicting anti-EBOV molecules is underutilized; therefore, we discuss how such models could be leveraged to develop fast, efficient, robust, and novel algorithms to aid in the discovery of anti-EBOV drugs. We further discuss the deep neural network as a plausible ML algorithm for predicting anti-EBOV compounds. We also summarize the plethora of data sources necessary for ML predictions in the form of systematic and comprehensive high-dimensional data. With ongoing efforts to eradicate EVD, the application of artificial intelligence-based ML to EBOV drug discovery research can promote data-driven decision making and may help to reduce the high attrition rates of compounds in the drug development pipeline.

摘要

埃博拉病毒病(EVD)的影响是致命且具有毁灭性的,因此需要做出多项努力来识别有效的生物治疗分子。本综述旨在通过讨论机器学习(ML)技术在预测埃博拉病毒(EBOV)小分子抑制剂中的作用,为补充现有的埃博拉病毒研究工作提供观点。不同的ML算法已被用于预测抗EBOV化合物,包括贝叶斯算法、支持向量机算法和随机森林算法,这些算法呈现出具有可靠结果的强大模型。深度学习模型在预测抗EBOV分子方面的应用尚未得到充分利用;因此,我们讨论了如何利用此类模型开发快速、高效、稳健且新颖的算法,以协助发现抗EBOV药物。我们进一步讨论了深度神经网络作为一种合理的ML算法用于预测抗EBOV化合物。我们还以系统且全面的高维数据形式总结了ML预测所需的大量数据源。随着根除EVD的持续努力,基于人工智能的ML在EBOV药物发现研究中的应用可以促进数据驱动的决策制定,并可能有助于降低药物开发流程中化合物的高淘汰率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00fc/10052301/fbe976eeb8e6/pharmaceuticals-16-00332-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验