Zhang Chi, Duan Jinyuan, Lu Shuai, Zhang Duojun, Temiz Murat, Zhang Yongwei, Meng Zhaozong
School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China.
Department of Electronic and Electrical Engineering, University College London, London WC1E 6BT, UK.
Sensors (Basel). 2025 Jun 16;25(12):3766. doi: 10.3390/s25123766.
The identification of vital signs is becoming increasingly important in various applications, including healthcare monitoring, security, smart homes, and locating entrapped persons after disastrous events, most of which are achieved using continuous-wave radars and ultra-wideband systems. Operating frequency and transmission power are important factors to consider when conducting earthquake search and rescue (SAR) operations in urban regions. Poor communication infrastructure can also impede SAR operations. This study proposes a method for vital sign detection using an integrated sensing and communication (ISAC) system where a unified orthogonal frequency division multiplexing (OFDM) signal was adopted, and it is capable of sensing life signs and carrying out communication simultaneously. An ISAC demonstration system based on software-defined radios (SDRs) was initiated to detect respiratory and heartbeat rates while maintaining communication capability in a typical office environment. The specially designed OFDM signals were transmitted, reflected from a human subject, received, and processed to estimate the micro-Doppler effect induced by the breathing and heartbeat of the human in the environment. According to the results, vital signs, including respiration and heartbeat rates, have been accurately detected by post-processing the reflected OFDM signals with a 1 MHz bandwidth, confirmed with conventional contact-based detection approaches. The potential of dual-function capability of OFDM signals for sensing purposes has been verified. The principle and method developed can be applied in wider ISAC systems for search and rescue purposes while maintaining communication links.