Bao Panfeng, Yi Wenjun, Zhu Yue, Shen Yufeng, Peng Haotian
National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
School of Aeronautical Mechanical Manufacturing, Changsha Aeronautical Vocational and Technical College, Changsha 410124, China.
Sensors (Basel). 2025 Jun 19;25(12):3822. doi: 10.3390/s25123822.
Most existing fault diagnosis methods, although capable of extracting interpretable features such as attention-weighted fault-related frequencies, remain essentially black-box models that provide only classification results without transparent reasoning or diagnostic justification, limiting users' ability to understand and trust diagnostic outcomes. In this work, we present a novel, interpretable fault diagnosis framework that integrates spectral feature extraction with large language models (LLMs). Vibration signals are first transformed into spectral representations using Hilbert- and Fourier-based encoders to highlight key frequencies and amplitudes. A channel attention-augmented convolutional neural network provides an initial fault type prediction. Subsequently, structured information-including operating conditions, spectral features, and CNN outputs-is fed into a fine-tuned enhanced LLM, which delivers both an accurate diagnosis and a transparent reasoning process. Experiments demonstrate that our framework achieves high diagnostic performance while substantially improving interpretability, making advanced fault diagnosis accessible to non-expert users in industrial settings.
大多数现有的故障诊断方法,尽管能够提取可解释的特征,如注意力加权的故障相关频率,但本质上仍然是黑箱模型,只提供分类结果,没有透明的推理或诊断依据,限制了用户理解和信任诊断结果的能力。在这项工作中,我们提出了一种新颖的、可解释的故障诊断框架,该框架将频谱特征提取与大语言模型(LLMs)相结合。首先使用基于希尔伯特和傅里叶的编码器将振动信号转换为频谱表示,以突出关键频率和幅度。一个通道注意力增强的卷积神经网络提供初始的故障类型预测。随后,包括运行条件、频谱特征和卷积神经网络输出在内的结构化信息被输入到一个经过微调的增强大语言模型中,该模型既能提供准确的诊断,又能提供透明的推理过程。实验表明,我们的框架在显著提高可解释性的同时实现了高诊断性能,使工业环境中的非专家用户也能进行先进的故障诊断。