Oktay Büsra, Ciftci Fatih, Erarslan Azime, Ahlatcıoğlu Özerol Esma
Department of Bioengineering, Yildiz Technical University, Istanbul 34210, Turkey.
Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey.
Polymers (Basel). 2025 Jun 17;17(12):1673. doi: 10.3390/polym17121673.
This study presents the development and comprehensive characterization of biopolymer-based nanofibrous composites composed of polyvinyl alcohol (PVA), chitosan (CS), boric acid (BA), and a natural antifungal agent natamycin (NAT), designed for therapeutic applications. A dual-layer 3D-fiber composite (PVA/CS/BA_PVA/NAT) was successfully fabricated using a layer-by-layer 3D bioprinting technique and electro-spinning, integrating BA into the core matrix and NAT into the outer layer. Mechanical tests revealed a significantly improved elastic modulus of 763.04 ± 14.54 MPa and the highest ultimate tensile stress (50.45 ± 2.58 MPa) among all samples. Despite a moderate strain at break (11.77 ± 0.49%), the composite preserved sufficient elasticity suitable for biological interfaces. Morphological assessment via SEM confirmed the successful deposition of continuous and bead-free nanofibers, with controlled fiber alignment and reduced average fiber diameters, especially in the BA-incorporated structure. The dual-layered system displayed enhanced uniformity and structural coherence. The drug release analysis demonstrated sustained NAT delivery over a 90 min period. Kinetic modeling showed a high correlation with the Korsmeyer-Peppas model (R > 0.99), suggesting diffusion-controlled release, supported by the Korsmeyer-Peppas model's Fickian diffusion exponent. In contrast, zero- and first-order models exhibited weaker fits, underscoring the relevance of a matrix-based release mechanism governed by the layered configuration. Crucially, antifungal assays against revealed substantial bioactivity. The PVA/CS/BA_PVA/NAT formulation achieved the largest inhibition zone (1.64 ± 0.13 cm), significantly outperforming single-layer controls such as PVA/CS/BA (1.25 ± 0.08 cm) and PVA/CS_PVA/NAT (1.43 ± 0.08 cm), while neat PVA exhibited no inhibition. These results confirm the synergistic antifungal efficacy of BA and NAT within the dual-layer structure. Together, these findings highlight the potential of the 3D-printed PVA/CS/BA_PVA/NAT composite as a mechanically robust, morphologically optimized, and bioactive platform for antifungal therapy and wound-healing applications.
本研究展示了一种基于生物聚合物的纳米纤维复合材料的开发及其全面表征,该复合材料由聚乙烯醇(PVA)、壳聚糖(CS)、硼酸(BA)和天然抗真菌剂那他霉素(NAT)组成,专为治疗应用而设计。采用逐层3D生物打印技术和静电纺丝成功制备了双层3D纤维复合材料(PVA/CS/BA_PVA/NAT),将BA整合到核心基质中,将NAT整合到外层中。力学测试显示,在所有样品中,其弹性模量显著提高,达到763.04±14.54 MPa,极限拉伸应力最高(50.45±2.58 MPa)。尽管断裂应变适中(11.77±0.49%),但该复合材料仍保留了适合生物界面的足够弹性。通过扫描电子显微镜(SEM)进行的形态学评估证实,连续且无珠的纳米纤维成功沉积,纤维排列可控,平均纤维直径减小,尤其是在含有BA的结构中。双层系统显示出更高的均匀性和结构连贯性。药物释放分析表明,NAT在90分钟内持续释放。动力学建模显示与Korsmeyer-Peppas模型高度相关(R>0.99),表明为扩散控制释放,这得到了Korsmeyer-Peppas模型的菲克扩散指数的支持。相比之下,零级和一级模型的拟合度较弱,突出了由分层结构控制的基于基质的释放机制的相关性。至关重要的是,针对……的抗真菌试验显示出显著的生物活性。PVA/CS/BA_PVA/NAT配方实现了最大的抑菌圈(1.64±0.13 cm),显著优于单层对照,如PVA/CS/BA(1.25±0.08 cm)和PVA/CS_PVA/NAT(1.43±0.08 cm),而纯PVA没有抑菌作用。这些结果证实了BA和NAT在双层结构中的协同抗真菌功效。总之,这些发现突出了3D打印的PVA/CS/BA_PVA/NAT复合材料作为一种机械性能强大、形态优化且具有生物活性的平台在抗真菌治疗和伤口愈合应用中的潜力。