Lin Xuefen, Fan Linhui, Gu Yifan, Wu Zhixian
College of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023 China.
School of English Language and Culture, Zhejiang International Studies University, Hangzhou, 310023 China.
Cogn Neurodyn. 2025 Dec;19(1):100. doi: 10.1007/s11571-025-10283-5. Epub 2025 Jun 24.
In recent years, emotion recognition, particularly EEG-based emotion recognition, has found widespread application across various domains. Enhancing EEG data processing and emotion recognition models remains a key research focus in this field. This paper presents an emotion recognition framework combining the CUSUM algorithm-based adaptive window selection technique with the convolutional attention-enhanced Kolmogorov-Arnold Networks (CA-KAN). The improved CUSUM algorithm effectively extracts the most emotion-relevant segments from raw EEG data. Furthermore, by enhancing the KAN network, the CA-KAN model achieves both high accuracy and efficiency in emotion recognition. The proposed framework achieved peak classification accuracies of 94.63% and 94.73% on the SEED and SEED-IV datasets, respectively. Additionally, the framework offers a lightweight advantage, demonstrating significant potential for real-world applications, including medical emotion monitoring and driver emotion detection.
近年来,情感识别,尤其是基于脑电图(EEG)的情感识别,已在各个领域得到广泛应用。加强脑电图数据处理和情感识别模型仍然是该领域的关键研究重点。本文提出了一种情感识别框架,该框架将基于累积和(CUSUM)算法的自适应窗口选择技术与卷积注意力增强的柯尔莫哥洛夫 - 阿诺德网络(CA - KAN)相结合。改进后的CUSUM算法有效地从原始脑电图数据中提取出与情感最相关的片段。此外,通过增强KAN网络,CA - KAN模型在情感识别中实现了高精度和高效率。所提出的框架在SEED和SEED - IV数据集上分别达到了94.63%和94.73%的峰值分类准确率。此外,该框架具有轻量级优势,在包括医学情感监测和驾驶员情感检测在内的实际应用中显示出巨大潜力。