Suppr超能文献

SST-CRAM:基于空间-光谱-时间的卷积循环神经网络,用于脑电情感识别,带有轻量级注意力机制。

SST-CRAM: spatial-spectral-temporal based convolutional recurrent neural network with lightweight attention mechanism for EEG emotion recognition.

作者信息

Qiao Yingxiao, Zhao Qian

机构信息

Control Science and Engineering, School of Engineering, Qufu Normal University, Rizhao, Shandong Province China.

出版信息

Cogn Neurodyn. 2024 Oct;18(5):2621-2635. doi: 10.1007/s11571-024-10114-z. Epub 2024 Apr 30.

Abstract

Through emotion recognition with EEG signals, brain responses can be analyzed to monitor and identify individual emotional states. The success of emotion recognition relies on comprehensive emotion information extracted from EEG signals and the constructed emotion identification model. In this work, we proposed an innovative approach, called spatial-spectral-temporal-based convolutional recurrent neural network (CRNN) with lightweight attention mechanism (SST-CRAM). Firstly, we combined power spectral density (PSD) with differential entropy (DE) features to construct four-dimensional (4D) EEG feature maps and obtain more spatial, spectral, and temporal information. Additional, with a spatial interpolation algorithm, the utilization of the obtained valuable information was enhanced. Next, the constructed 4D EEG feature map was input into the convolutional neural network (CNN) integrated with convolutional block attention module (CBAM) and efficient channel attention module (ECA-Net) for extracting spatial and spectral features. CNN was used to learn spatial and spectral information and CBAM was employed to prioritize global information and obtain detailed and accurate features. ECA-Net was also used to further highlight key brain regions and frequency bands. Finally, a bidirectional long short-term memory (LSTM) network was used to explore the temporal correlation of EEG feature maps for comprehensive feature extraction. To assess the performance of our model, we tested it on the publicly available DEAP dataset. Our model demonstrated excellent performance and achieved high accuracy (98.63% for arousal classification and 98.66% for valence classification). These results indicated that SST-CRAM could fully utilize spatial, spectral, and temporal information to improve the emotion recognition performance.

摘要

通过基于脑电图(EEG)信号的情感识别,可以分析大脑反应以监测和识别个体的情感状态。情感识别的成功依赖于从EEG信号中提取的全面情感信息以及构建的情感识别模型。在这项工作中,我们提出了一种创新方法,称为基于空间-频谱-时间的卷积循环神经网络(CRNN)与轻量级注意力机制(SST-CRAM)。首先,我们将功率谱密度(PSD)与微分熵(DE)特征相结合,构建四维(4D)EEG特征图,并获得更多的空间、频谱和时间信息。此外,通过空间插值算法,增强了对所获得的有价值信息的利用。接下来,将构建的4D EEG特征图输入到集成了卷积块注意力模块(CBAM)和高效通道注意力模块(ECA-Net)的卷积神经网络(CNN)中,以提取空间和频谱特征。CNN用于学习空间和频谱信息,CBAM用于对全局信息进行优先级排序并获得详细准确的特征。ECA-Net也用于进一步突出关键脑区和频段。最后,使用双向长短期记忆(LSTM)网络探索EEG特征图的时间相关性,以进行全面特征提取。为了评估我们模型的性能,我们在公开可用的DEAP数据集上对其进行了测试。我们的模型表现出色,获得了高精度(唤醒分类为98.63%,效价分类为98.66%)。这些结果表明,SST-CRAM可以充分利用空间、频谱和时间信息来提高情感识别性能。

相似文献

5
Spectral entropy monitoring for adults and children undergoing general anaesthesia.全身麻醉下成人和儿童的频谱熵监测
Cochrane Database Syst Rev. 2016 Mar 14;3(3):CD010135. doi: 10.1002/14651858.CD010135.pub2.

本文引用的文献

2
4D attention-based neural network for EEG emotion recognition.用于脑电图情感识别的基于4D注意力的神经网络。
Cogn Neurodyn. 2022 Aug;16(4):805-818. doi: 10.1007/s11571-021-09751-5. Epub 2022 Jan 3.
5
An Investigation of Deep Learning Models for EEG-Based Emotion Recognition.基于脑电图的情绪识别深度学习模型研究
Front Neurosci. 2020 Dec 23;14:622759. doi: 10.3389/fnins.2020.622759. eCollection 2020.
9
Squeeze-and-Excitation Networks.挤压激励网络。
IEEE Trans Pattern Anal Mach Intell. 2020 Aug;42(8):2011-2023. doi: 10.1109/TPAMI.2019.2913372. Epub 2019 Apr 29.
10
Spatio-Spectral Representation Learning for Electroencephalographic Gait-Pattern Classification.脑电步态模式分类的时空谱表示学习。
IEEE Trans Neural Syst Rehabil Eng. 2018 Sep;26(9):1858-1867. doi: 10.1109/TNSRE.2018.2864119. Epub 2018 Aug 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验