纳米材料助力生物标志物的多重检测。
Multiplex Detection of Biomarkers Empowered by Nanomaterials.
作者信息
Li Zongbo, Guo Mingquan, Zhong Wenwan
机构信息
State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China.
出版信息
Precis Chem. 2025 Mar 21;3(6):297-318. doi: 10.1021/prechem.4c00096. eCollection 2025 Jun 23.
Biomarkers, including proteins, nucleic acids, and metabolites, are the molecules that can provide insightful information about biological processes and pathological developments. Identification and quantification of biomarkers are highly beneficial for disease diagnosis, progression monitoring, and treatment supervision. However, disease development often involves the complex interplay of molecular networks that limits the utility of individual biomarkers in reaching reliable diagnostic and therapeutic decisions. Thus, recent developments of bioassays have turned the focus to analysis of a collection of biomarkers simultaneously, aiming to improve precision in diagnosis. To achieve the demanded throughput in multiplex detection while keeping the excellent analytical performance in speed, sensitivity, and selectivity, nanomaterials stand out to be the proper enabling tools, with their unique but highly diversified physical and chemical properties and the much advanced synthesis strategies. Herein, this review highlights the recent (2020-2024) developments in the nanomaterial-enabled, optical multiplex sensing techniques. Four key approaches to achieve multiplexity were discussed: spatial coding, signal coding, biocarriers, and data deconvolution using machine learning. We believe these advancements have driven forward the applications of multiplex detection in clinical settings by improving the throughput of biomarker analysis.
生物标志物,包括蛋白质、核酸和代谢物,是能够提供有关生物过程和病理发展的深刻见解信息的分子。生物标志物的鉴定和定量对于疾病诊断、病情监测和治疗监督非常有益。然而,疾病发展通常涉及分子网络的复杂相互作用,这限制了单个生物标志物在做出可靠诊断和治疗决策方面的效用。因此,生物测定的最新发展已将重点转向同时分析一组生物标志物,旨在提高诊断的准确性。为了在多重检测中实现所需的通量,同时在速度、灵敏度和选择性方面保持出色的分析性能,纳米材料因其独特但高度多样化的物理和化学性质以及先进得多的合成策略而成为合适的使能工具。在此,本综述重点介绍了近年来(2020 - 2024年)基于纳米材料的光学多重传感技术的发展。讨论了实现多重性的四种关键方法:空间编码、信号编码、生物载体以及使用机器学习的数据去卷积。我们相信,这些进展通过提高生物标志物分析的通量推动了多重检测在临床环境中的应用。
相似文献
Precis Chem. 2025-3-21
JBI Database System Rev Implement Rep. 2016-4
Cochrane Database Syst Rev. 2023-11-27
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2018-1-22
Cochrane Database Syst Rev. 2017-12-22
Cochrane Database Syst Rev. 2021-4-19
Cochrane Database Syst Rev. 2008-7-16
Cochrane Database Syst Rev. 2022-7-22
引用本文的文献
Lab Chip. 2025-7-14
本文引用的文献
Chem Biomed Imaging. 2023-12-15
Curr Top Membr. 2024