Suppr超能文献

一种用于探索自由能景观中任意区域的下沉方法。

A Sinking Approach to Explore Arbitrary Areas in Free Energy Landscapes.

作者信息

Pan Zhijun, Li Maodong, Chen Dechin, Yang Yi Isaac

机构信息

Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China.

出版信息

JACS Au. 2025 Jun 2;5(6):2898-2908. doi: 10.1021/jacsau.5c00460. eCollection 2025 Jun 23.

Abstract

To address the time-scale limitations in molecular dynamics (MD) simulations, numerous enhanced sampling methods have been developed to expedite the exploration of complex free energy landscapes. A commonly employed approach accelerates the sampling of degrees of freedom associated with predefined collective variables (CVs), which typically tend to traverse the entire CV range. However, in many scenarios, the focus of interest is on specific regions within the CV space. In this paper, we introduce a novel "sinking" approach that enables enhanced sampling of arbitrary areas within the CV space. This method, referred to as SinkMeta, "sinks" the interior bias potential to create a restraining potential "cliff" at the grid edges, thus confining the exploration of CVs in MD simulations to a predefined area. SinkMeta requires minimal sampling steps to estimate the free energy landscape for CV subspaces of various shapes and dimensions, offering an efficient and flexible solution for sampling minimum free energy paths in high-dimensional spaces. We believe that SinkMeta will pioneer a new paradigm for sampling partial phase spaces and provide an efficient and straightforward way to study the interaction of drugs with biomolecules such as proteins and DNA in MD simulations.

摘要

为了解决分子动力学(MD)模拟中的时间尺度限制问题,人们开发了许多增强采样方法来加速对复杂自由能景观的探索。一种常用的方法是加速与预定义集体变量(CV)相关的自由度的采样,这些集体变量通常倾向于遍历整个CV范围。然而,在许多情况下,关注的重点是CV空间内的特定区域。在本文中,我们引入了一种新颖的“下沉”方法,该方法能够增强对CV空间内任意区域的采样。这种方法称为SinkMeta,它会“下沉”内部偏置势,在网格边缘创建一个约束势“悬崖”,从而将MD模拟中CV的探索限制在预定义区域内。SinkMeta只需最少的采样步骤就能估计各种形状和维度的CV子空间的自由能景观,为在高维空间中采样最小自由能路径提供了一种高效且灵活的解决方案。我们相信,SinkMeta将开创一种采样部分相空间的新范式,并为在MD模拟中研究药物与蛋白质和DNA等生物分子的相互作用提供一种高效且直接的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c79/12188410/47a98d83dd68/au5c00460_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验