Suppr超能文献

横向联邦学习与Cox模型评估

Horizontal federated learning and assessment of Cox models.

作者信息

Westers Frank, Leder Sam, Tealdi Lucia

机构信息

Applied Cryptography & Quantum Applications, Netherlands Institute for Applied Scientific Research (TNO), The Hague, Netherlands.

Data Science, Netherlands Institute for Applied Scientific Research (TNO), The Hague, Netherlands.

出版信息

Front Digit Health. 2025 Jun 12;7:1603630. doi: 10.3389/fdgth.2025.1603630. eCollection 2025.

Abstract

The Cox Proportional Hazards model is a widely used method for survival analysis in medical research. However, training an accurate model requires access to a sufficiently large dataset, which is often challenging due to data fragmentation. A potential solution is to combine data from multiple medical institutions, but privacy constraints typically prevent direct data sharing. Federated learning offers a privacy-preserving alternative by allowing multiple parties to collaboratively train a model without exchanging raw data. In this work, we develop algorithms for training Cox models in a federated setting, leveraging survival stacking to facilitate distributed learning. In addition, we introduce a novel secure computation of Schoenfeld residuals, a key diagnostic tool for validating the Cox model. We provide an open-source implementation of our approach and present empirical results that demonstrate the accuracy and benefits of federated Cox regression.

摘要

Cox比例风险模型是医学研究中广泛用于生存分析的方法。然而,训练一个准确的模型需要访问足够大的数据集,由于数据碎片化,这通常具有挑战性。一个潜在的解决方案是合并来自多个医疗机构的数据,但隐私限制通常会阻止直接的数据共享。联邦学习提供了一种隐私保护的替代方案,它允许多方在不交换原始数据的情况下协作训练模型。在这项工作中,我们开发了在联邦环境中训练Cox模型的算法,利用生存堆叠来促进分布式学习。此外,我们引入了一种用于Schoenfeld残差的新型安全计算方法,Schoenfeld残差是验证Cox模型的关键诊断工具。我们提供了我们方法的开源实现,并展示了实证结果,这些结果证明了联邦Cox回归的准确性和优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验