Kong Yan, Jia Xinmei, Chai Xiaoyan, Chen Zhi, Shang Chunyan, Jiang Xingxing, Cai Huizhu, Jing Lingyan, Hu Qi, Yang Hengpan, Zhang Xue, He Chuanxin
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
Department of Chemical Physics, University of Science and Technology of China, Hefei 23002, China.
Natl Sci Rev. 2025 May 6;12(7):nwaf173. doi: 10.1093/nsr/nwaf173. eCollection 2025 Jul.
Manipulating the local microenvironments of single-atom catalysts is crucial for the product selectivity of CO electroreduction. Although theoretical research suggests that modifying the coordination structure of isolated Ni sites can promote the reduction of CO to CH, there is still no experimental evidence to date. Herein, by regulating the coordination shell of boron (B) surrounding the Ni central atom, we have achieved the transformation of the reduction product from CO to CH. techniques and density functional theory calculations reveal that B coordination in the second shell of the Ni-N-C motifs (Ni-N-B/C) facilitates CO formation whereas incorporating B into the first shell (Ni-NB/C) significantly tunes the electronic structure of the Ni atoms, leading to electron delocalization, which enhances the *CO intermediate adsorption strength and makes CH the dominant product. This study marks the experimental realization of electrochemical CO-to-CH conversion at isolated Ni sites and underscores the importance of local coordination environment regulation in steering the reaction pathways of single-atom catalysts.
调控单原子催化剂的局部微环境对于CO电还原的产物选择性至关重要。尽管理论研究表明,改变孤立Ni位点的配位结构可促进CO还原为CH,但迄今为止仍缺乏实验证据。在此,通过调节围绕Ni中心原子的硼(B)配位壳层,我们实现了还原产物从CO到CH的转变。技术和密度泛函理论计算表明,Ni-N-C结构单元(Ni-N-B/C)第二壳层中的B配位有利于CO生成,而将B掺入第一壳层(Ni-NB/C)会显著调节Ni原子的电子结构,导致电子离域,增强了*CO中间体的吸附强度,使CH成为主要产物。本研究标志着在孤立Ni位点上实现了电化学CO到CH的转化,并强调了局部配位环境调控在引导单原子催化剂反应路径中的重要性。