Suppr超能文献

提出医生在临床实践中使用人工智能工具的核心能力要求。

Proposing core competencies for physicians in using artificial intelligence tools in clinical practice.

作者信息

Scott Ian A, Shaw Tim, Slade Christine, Wan Tai Tak, Barmanray Rahul, Coorey Craig, Johnson Sandra Lj, Bell Lana, Herd Michael, Sullivan Clair M

机构信息

Digital Health and Informatics, Metro South Hospital and Health Service, Brisbane, Queensland, Australia.

Queensland Digital Health Centre, University of Queensland, Brisbane, Queensland, Australia.

出版信息

Intern Med J. 2025 Aug;55(8):1403-1409. doi: 10.1111/imj.70112. Epub 2025 Jun 27.

Abstract

Artificial intelligence (AI) will likely transform many aspects of healthcare, and physicians will need to adapt and lead. The expanding range of AI tools calls for physicians to become competent in their proper use if we are to achieve better patient experience, population health and health equity, and with greater efficiency, while enhancing physician satisfaction. This viewpoint proposes a practical and manageable set of core competencies for physicians in using AI tools effectively and ethically and suggests methods for acquiring these competencies.

摘要

人工智能(AI)可能会改变医疗保健的许多方面,医生需要适应并发挥引领作用。人工智能工具的范围不断扩大,这就要求医生如果想要实现更好的患者体验、群体健康和健康公平,提高效率并提升医生满意度,就必须能够熟练正确地使用这些工具。本文观点提出了一套切实可行且易于管理的核心能力要求,以帮助医生有效且合乎道德地使用人工智能工具,并给出了获得这些能力的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7897/12347303/3e0f7c1ed24a/IMJ-55-1403-g001.jpg

相似文献

1
Proposing core competencies for physicians in using artificial intelligence tools in clinical practice.
Intern Med J. 2025 Aug;55(8):1403-1409. doi: 10.1111/imj.70112. Epub 2025 Jun 27.
6
Educational Competencies for Artificial Intelligence in Radiology: A Scoping Review.
Acad Radiol. 2025 Sep;32(9):5624-5634. doi: 10.1016/j.acra.2025.06.044. Epub 2025 Jul 21.
9
10
Healthcare workers' informal uses of mobile phones and other mobile devices to support their work: a qualitative evidence synthesis.
Cochrane Database Syst Rev. 2024 Aug 27;8(8):CD015705. doi: 10.1002/14651858.CD015705.pub2.

本文引用的文献

2
A framework for human evaluation of large language models in healthcare derived from literature review.
NPJ Digit Med. 2024 Sep 28;7(1):258. doi: 10.1038/s41746-024-01258-7.
3
Should AI models be explainable to clinicians?
Crit Care. 2024 Sep 12;28(1):301. doi: 10.1186/s13054-024-05005-y.
4
A comprehensive overview of barriers and strategies for AI implementation in healthcare: Mixed-method design.
PLoS One. 2024 Aug 9;19(8):e0305949. doi: 10.1371/journal.pone.0305949. eCollection 2024.
5
The First Generative AI Prompt-A-Thon in Healthcare: A Novel Approach to Workforce Engagement with a Private Instance of ChatGPT.
PLOS Digit Health. 2024 Jul 23;3(7):e0000394. doi: 10.1371/journal.pdig.0000394. eCollection 2024 Jul.
7
Artificial Intelligence in the Provision of Health Care: An American College of Physicians Policy Position Paper.
Ann Intern Med. 2024 Jul;177(7):964-967. doi: 10.7326/M24-0146. Epub 2024 Jun 4.
8
Achieving large-scale clinician adoption of AI-enabled decision support.
BMJ Health Care Inform. 2024 May 30;31(1):e100971. doi: 10.1136/bmjhci-2023-100971.
9
The new paradigm in machine learning - foundation models, large language models and beyond: a primer for physicians.
Intern Med J. 2024 May;54(5):705-715. doi: 10.1111/imj.16393. Epub 2024 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验