Suppr超能文献

使用镍辅助的钆掺杂二氧化铈阳极提高固体氧化物燃料电池的功率密度。

Enhanced power density in solid oxide fuel cells using nickel-assisted gadolinium-doped ceria anodes.

作者信息

Badi Nacer, Roy Aashis S, Sagar Raghavendra, Alghamdi Saleh A, Alsharari Abdulrhman M, Ignatiev Alex

机构信息

Thermal Management and Sustainability Research Laboratory, Department of Physics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia.

Renewable Energy & Environmental Technologies Research Center, University of Tabuk, Tabuk, Saudi Arabia.

出版信息

PLoS One. 2025 Jun 27;20(6):e0326559. doi: 10.1371/journal.pone.0326559. eCollection 2025.

Abstract

This study demonstrates the use of Gadolinium-doped ceria (GDC) (Ce₀.Gd₀.₂O₂) as the anode, BaNb₄MoO₂₀ (BNMO) as the electrolyte, and Lanthanum strontium cobalt oxide (LSCO) (La₀.Sr₀.₄CoO₃) as the cathode in the fabrication of a solid oxide fuel cell (SOFC). The synthesized nanocomposites were characterized using Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) for structural analysis, and scanning electron microscopy (SEM) for surface morphology assessment. DC conductivity measurements revealed that LSCO exhibited a high conductivity of 5.2 S/cm, attributed to the efficient flow of electrons through the electrolyte, highlighting its potential as a promising cathode material. Nyquist plots displayed semi-circular arcs, which correspond to distinct electrochemical processes within the system. The diameter of these arcs reflects the charge transfer resistance, primarily due to grain boundary resistance, while the initial resistance preceding the arc is associated with the bulk properties of the electrolyte. Beyond the first semicircle, diffusion resistance increases with frequency as a result of electrode polarization. It was also observed that the cell voltage dropped in discrete steps when the current density reached 200 mA/cm2. Specifically, the voltage decreased from 0.75 V to 0.53 V at 500°C, and from 0.98 V to 0.73 V at 800°C, likely due to charge transfer resistance at the electrode-electrolyte interface. The power density curve indicated that the cell achieved power densities of approximately 0.094, 0.118, 0.146, and 0.184 W/cm2 at operating temperatures of 500, 600, 700, and 800°C, respectively, demonstrating favorable performance for an SOFC employing BNMO as the electrolyte.

摘要

本研究展示了在固体氧化物燃料电池(SOFC)制造中,使用钆掺杂二氧化铈(GDC)(Ce₀.Gd₀.₂O₂)作为阳极,铌酸钡钼(BNMO)(BaNb₄MoO₂₀)作为电解质,以及镧锶钴氧化物(LSCO)(La₀.Sr₀.₄CoO₃)作为阴极。使用傅里叶变换红外光谱(FTIR)和X射线衍射(XRD)对合成的纳米复合材料进行结构分析表征,并使用扫描电子显微镜(SEM)进行表面形态评估。直流电导率测量表明,LSCO表现出5.2 S/cm的高电导率,这归因于电子通过电解质的有效流动,突出了其作为有前景的阴极材料的潜力。奈奎斯特图显示出半圆弧,其对应于系统内不同的电化学过程。这些弧的直径反映了电荷转移电阻,主要是由于晶界电阻,而弧之前的初始电阻与电解质的体相性质相关。在第一个半圆弧之后,由于电极极化,扩散电阻随频率增加。还观察到,当电流密度达到200 mA/cm2时,电池电压以离散步骤下降。具体而言,在500°C时,电压从0.75 V降至0.53 V,在800°C时,电压从0.98 V降至0.73 V,这可能是由于电极 - 电解质界面处的电荷转移电阻所致。功率密度曲线表明,该电池在500、600、700和800°C的工作温度下分别实现了约0.094、0.118、0.146和0.184 W/cm2的功率密度,证明了采用BNMO作为电解质的SOFC具有良好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2eb/12204581/bc027a47a707/pone.0326559.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验