Suppr超能文献

沙特阿拉伯流感样疾病趋势分析:统计与深度学习技术的比较研究

Analysis of influenza-like illness trends in Saudi Arabia: a comparative study of statistical and deep learning techniques.

作者信息

Guma Fathelrhman El

机构信息

Department of Mathematics, Al-Baha University College of Science, Al-Baha, Saudi Arabia.

出版信息

Osong Public Health Res Perspect. 2025 Jun;16(3):270-284. doi: 10.24171/j.phrp.2025.0080. Epub 2025 Jun 12.

Abstract

BACKGROUND

To develop and evaluate forecasting models using the Holt-Winters statistical approach and the long short-term memory (LSTM) deep learning method for weekly seasonal influenza-like illness (ILI) incidences in Saudi Arabia. The study compares model performance and assesses the predictive value added by incorporating region-specific exogenous variables within Middle Eastern epidemiological modeling.

METHODS

This study compared the performance of Holt-Winters and LSTM models in forecasting weekly ILI cases in Saudi Arabia, using data collected from 2017 to 2022. Time series analysis integrated exogenous variables including climatic conditions and population mobility trends. The Holt-Winters model employed both additive and multiplicative seasonal components. Model performance was evaluated using root mean squared error (RMSE), mean absolute percentage error, and R2.

RESULTS

The best-performing model, LSTM with exogenous variables, achieved an RMSE of 28.55, mean absolute error (MAE) of 0.14, R2 of 0.96, and percent bias (PBIAS) of +2.1%, indicating negligible systematic error. The LSTM model without exogenous variables demonstrated slightly lower accuracy (RMSE of 34.07, MAE of 0.18, R2 of 0.93, PBIAS of +5.8%), indicating strong predictive capability but less precision in determining peak ILI cases. The Holt-Winters model effectively captured seasonal and long-term trends, but showed a moderate performance with an RMSE of 82.57, MAE of 0.38, R2 of 0.58, and a high PBIAS of +14.2%, revealing significant unexplained variability during periods of high incidence fluctuation.

CONCLUSION

This study highlights the respective strengths and limitations of statistical and machine learning approaches for ILI forecasting.

摘要

背景

使用霍尔特 - 温特斯统计方法和长短期记忆(LSTM)深度学习方法,开发并评估沙特阿拉伯每周季节性流感样疾病(ILI)发病率的预测模型。该研究比较了模型性能,并评估了在中东流行病学建模中纳入特定区域外生变量所增加的预测价值。

方法

本研究使用2017年至2022年收集的数据,比较了霍尔特 - 温特斯模型和LSTM模型在预测沙特阿拉伯每周ILI病例方面的性能。时间序列分析整合了包括气候条件和人口流动趋势在内的外生变量。霍尔特 - 温特斯模型采用了加法和乘法季节性成分。使用均方根误差(RMSE)、平均绝对百分比误差和R2评估模型性能。

结果

表现最佳的模型,即带有外生变量的LSTM模型,RMSE为28.55,平均绝对误差(MAE)为0.14,R2为0.96,偏差百分比(PBIAS)为 +2.1%,表明系统误差可忽略不计。没有外生变量的LSTM模型显示出略低的准确性(RMSE为34.07,MAE为0.18,R2为0.93,PBIAS为 +5.8%),表明其具有较强的预测能力,但在确定ILI病例峰值时精度较低。霍尔特 - 温特斯模型有效地捕捉了季节性和长期趋势,但表现中等,RMSE为82.57,MAE为0.38,R2为0.58,高PBIAS为 +14.2%,揭示了在高发病率波动期间存在显著的无法解释的变异性。

结论

本研究突出了ILI预测中统计方法和机器学习方法各自的优势与局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21dc/12245528/c24da31d7efa/j-phrp-2025-0080f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验