Suppr超能文献

Gut microbiota facilitates the adaptation of Apolygus lucorum (Hemiptera: Miridae) to its host plant.

作者信息

Zhang Xian, Wu Ying-Gu, Zhang Jia-Lin, Li Pai, Tang Yin, Mu Yu-Pei, Wang Mu-Yang, Wang Wei, Mao Ying-Bo

机构信息

East China University of Science and Technology, Shanghai, China.

CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China.

出版信息

J Econ Entomol. 2025 Aug 29;118(4):1553-1564. doi: 10.1093/jee/toaf142.

Abstract

The mirid bug, Apolygus lucorum Meyer-Dür, is a significant pest in cotton (Gossypium hirsutum L.) cultivation. Previous studies have shown that gut microbiota plays a crucial role in insect adaptation to host plants. However, the gut microbiota of A. lucorum and its role in insect adaptation remains unclear. In this study, we investigated the gut microbiota of A. lucorum and their contributions to the growth performance of the mirids on cotton plants. We analyzed gut microbial compositions of field-collected (FCAL) and laboratory-reared (LRAL) A. lucorum populations. High-throughput sequencing of the 16S rRNA gene revealed distinct gut microbial community structures between the two populations, with Delftia and Serratia serving as the dominant gut bacteria in the FCAL and LRAL populations, respectively. We confirmed that Delftia sp. W1 and Serratia marcescens R1 facilitate the growth of A. lucorum on cotton. The A. lucorum exhibits retarded growth on cotton by removal of these two strains, and its growth performance is restored upon recolonization with these strains. The capabilities of both strains in protein degradation are evident, with S. marcescens R1 exhibiting the most pronounced degradation ability. This study reveals the crucial role of gut microbiota in A. lucorum's adaptation to cotton. We identified two strains from the gut microbiota which contribute to protein digestion in A. lucorum. Our findings contribute to understanding the interaction mechanisms among insects, symbiotic bacteria, and plants, facilitating the development of insect symbiotic microbial resources.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验