Davoodi Saeed, Namata Faridah, Rosén Tomas, Roth Stephan V, Malkoch Michael, Söderberg L Daniel, Lundell Fredrik
Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm 100 44, Sweden.
Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm 100 44, Sweden.
Biomacromolecules. 2025 Jul 14;26(7):4133-4145. doi: 10.1021/acs.biomac.5c00128. Epub 2025 Jun 28.
The complex architecture of wood motivates studies of bioinspired materials that combine strength, toughness, and mechanical integrity. We explore the interplay between nanofiber alignment and molecular interactions in composite filaments formed from cellulose nanofibers (CNFs) and a dendritic polyampholyte, Helux. Helux enhances strength by 60% and increases toughness 5-fold through ionic bonding and thermal covalent cross-linking. However, wide-angle X-ray scattering (WAXS) reveals reduced nanofiber alignment in Helux-containing samples, resulting in a 25% decrease in stiffness─highlighting a trade-off between structural order and cohesion. Polarized optical microscopy (POM) and in situ small-angle X-ray scattering (SAXS) attribute this reduced alignment to enhanced rotary diffusion, driven by carboxylate groups of the Helux. With Helux, multivalent links across the nanofibers give a denser and tougher network with fewer voids. This behavior resembles lignin and hemicellulose interactions in wood, where flexibility and cohesion govern the performance.
木材的复杂结构激发了人们对兼具强度、韧性和机械完整性的仿生材料的研究。我们探究了由纤维素纳米纤维(CNF)和树枝状聚两性电解质Helux形成的复合长丝中纳米纤维排列与分子相互作用之间的相互影响。Helux通过离子键合和热共价交联使强度提高了60%,韧性增加了5倍。然而,广角X射线散射(WAXS)显示,含Helux的样品中纳米纤维排列减少,导致刚度降低25%,这突出了结构有序性和内聚力之间的权衡。偏光显微镜(POM)和原位小角X射线散射(SAXS)将这种排列减少归因于Helux的羧基驱动的旋转扩散增强。有了Helux,纳米纤维间的多价连接形成了一个更致密、更坚韧且空隙更少的网络。这种行为类似于木材中木质素和半纤维素的相互作用,其中柔韧性和内聚力决定了性能。