Dickerson Joshua L, Lucas Bronwyn A
Department of Molecular and Cell Biology, University of California, Berkeley, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, USA.
Department of Molecular and Cell Biology, University of California, Berkeley, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, USA; Center for Computational Biology, University of California, Berkeley, USA; Molecular Biophysics and Integrated Bio-Imaging, Lawrence Berkeley National Lab, Berkeley, USA.
Curr Opin Struct Biol. 2025 Aug;93:103100. doi: 10.1016/j.sbi.2025.103100. Epub 2025 Jun 28.
Recent breakthroughs in single-particle cryogenic electron microscopy (cryo-EM) and protein structure prediction have transformed our ability to resolve molecular structures. Since we have now experimentally determined, or can confidently predict, the structures of a significant portion of the proteome, and since workflows for imaging in cells are established, the stage is set for applying cryo-EM to understand the molecular basis of complex cellular functions. This review explores a spectrum of data collection strategies-from 2D approaches to tomography-used for in situ cryo-EM. We discuss their relative merits in addressing key biological questions and the need to tailor them towards experimental goals. Improvements in theoretical and practical understanding of the challenges for in situ cryo-EM are necessary for optimizing data collection strategies and pushing the boundaries of structural cell biology.
单颗粒低温电子显微镜技术(cryo-EM)和蛋白质结构预测方面的最新突破,改变了我们解析分子结构的能力。既然我们现在已经通过实验确定,或者能够可靠地预测蛋白质组中很大一部分的结构,而且细胞成像工作流程也已确立,那么应用低温电子显微镜技术来理解复杂细胞功能的分子基础的时机已经成熟。本综述探讨了一系列用于原位低温电子显微镜技术的数据收集策略——从二维方法到断层扫描。我们讨论了它们在解决关键生物学问题方面的相对优点,以及根据实验目标进行调整的必要性。对原位低温电子显微镜技术所面临挑战的理论和实践理解的改进,对于优化数据收集策略和推动结构细胞生物学的边界至关重要。