机械敏感性黏附G蛋白偶联受体133(GPR133/ADGRD1)可促进骨形成。
The mechanosensitive adhesion G protein-coupled receptor 133 (GPR133/ADGRD1) enhances bone formation.
作者信息
Lehmann Juliane, Lin Hui, Zhang Zihao, Wiermann Maren, Ricken Albert M, Brinkmann Franziska, Brendler Jana, Ullmann Christian, Bayer Luisa, Berndt Sandra, Penk Anja, Winkler Nadine, Hirsch Franz Wolfgang, Fuhs Thomas, Käs Josef, Xiao Peng, Schöneberg Torsten, Rauner Martina, Sun Jin-Peng, Liebscher Ines
机构信息
Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany.
Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
出版信息
Signal Transduct Target Ther. 2025 Jun 30;10(1):199. doi: 10.1038/s41392-025-02291-y.
Osteoporosis represents an increasing health and socioeconomic burden on aging societies. Current therapeutic options often come with potentially severe side effects or lack long-term efficacy, highlighting the urgent need for more effective treatments. Identifying novel drug targets requires a thorough understanding of their physiological roles. Genome-wide association studies in humans have linked gene variants of the adhesion G protein-coupled receptor 133 (GPR133/ADGRD1) to variations in bone mineral density and body height. In this study, we explore the impact of GPR133/ADGRD1 on osteoblast differentiation and function. Constitutive and osteoblast-specific knockouts of Gpr133/Adgrd1 in mice lead to reduced cortical bone mass and trabecularization in the femurs and vertebrae - features characteristic of osteoporosis. This osteopenic phenotype in receptor-deficient mice is caused by impaired osteoblast function, which, in turn, promotes increased osteoclast activity. At the molecular level, GPR133/ADGRD1 regulates osteoblast function and differentiation through a combined activation mechanism involving interaction with its endogenous ligand, protein tyrosine kinase 7 (PTK7), and mechanical forces. This is demonstrated in vitro through stretch assays and in vivo via a mechanical loading experiment. Further in vitro analysis shows that GPR133/ADGRD1-mediated osteoblast differentiation is driven by cAMP-dependent activation of the β-catenin signaling pathway. Activation of GPR133/ADGRD1 with the receptor-specific ligand AP-970/43482503 (AP503) enhances osteoblast function and differentiation, both in vitro and in vivo, significantly alleviating osteoporosis in a mouse ovariectomy model. These findings position GPR133/ADGRD1 as a promising therapeutic target for osteoporosis and other diseases characterized by reduced bone mass.
骨质疏松症给老龄化社会带来了日益加重的健康和社会经济负担。目前的治疗方法往往伴有潜在的严重副作用或缺乏长期疗效,这凸显了对更有效治疗方法的迫切需求。确定新的药物靶点需要深入了解它们的生理作用。人类全基因组关联研究已将粘附G蛋白偶联受体133(GPR133/ADGRD1)的基因变异与骨矿物质密度和身高的变化联系起来。在本研究中,我们探讨了GPR133/ADGRD1对成骨细胞分化和功能的影响。在小鼠中组成型敲除和在成骨细胞中特异性敲除Gpr133/Adgrd1会导致股骨和椎骨的皮质骨量减少和小梁化——这是骨质疏松症的特征。受体缺陷小鼠的这种骨质减少表型是由成骨细胞功能受损引起的,而成骨细胞功能受损反过来又促进破骨细胞活性增加。在分子水平上,GPR133/ADGRD1通过一种联合激活机制调节成骨细胞的功能和分化,该机制涉及与其内源性配体蛋白酪氨酸激酶7(PTK7)相互作用以及机械力。这在体外通过拉伸试验得到证实,在体内通过机械加载实验得到证实。进一步的体外分析表明,GPR133/ADGRD1介导的成骨细胞分化是由β-连环蛋白信号通路的cAMP依赖性激活驱动的。用受体特异性配体AP-970/43482503(AP503)激活GPR133/ADGRD在体外和体内均增强了成骨细胞的功能和分化,显著减轻了小鼠卵巢切除模型中的骨质疏松症。这些发现表明GPR133/ADGRD1是骨质疏松症和其他以骨量减少为特征的疾病的一个有前景的治疗靶点。