Lu Xin, Mo Ziwei, Liu Zhaopeng, Hu Yifeng, Du Chunyu, Liang Lirong, Liu Zhuoxin, Chen Guangming
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China.
State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
Angew Chem Int Ed Engl. 2024 Jul 15;63(29):e202405357. doi: 10.1002/anie.202405357. Epub 2024 Jun 10.
The rapid growth of flexible quasi-solid-state thermocells (TECs) provides a fresh way forward for wearable electronics. However, their insufficient mechanical strength and power output still hinder their further applications. This work demonstrates a one-stone-two-birds strategy to synergistically enhance the mechanical and thermoelectrochemical properties of the [Fe(CN)]-based TECs. By introducing Hofmeister effect and multiple non-covalent interactions via betaine zwitterions, the mechanical strength of the conventional brittle gelatin hydrogel electrolytes is substantially improved from 50 to 440 kPa, with a high stretchability approaching 250 %. Meanwhile, the betaine zwitterions strongly affect the solvation structure of [Fe(CN)] ions, thus enlarging the entropy difference and raising the thermoelectrochemical Seebeck coefficient from 1.47 to 2.2 mV K. The resultant quasi-solid-state TECs exhibit a normalized output power density of 0.48 mW m K, showing a notable improvement in overall performance compared to their counterparts without zwitterion regulation. The intrinsic thermo-reversible property also allows the TECs to repeatedly self-recover through sol-gel transformations, ensuring reliable energy output and even recycling of TECs in case of extreme mechanical damages. An energy-autonomous smart glove consisting of eighteen individual TECs is further designed, which can simultaneously monitor the temperature of different positions on any touched object, demonstrating high potential in wearable applications.
柔性准固态热电池(TECs)的快速发展为可穿戴电子产品提供了新的发展方向。然而,其机械强度和功率输出不足仍然阻碍了它们的进一步应用。这项工作展示了一种一石二鸟的策略,以协同增强基于[Fe(CN)]的TECs的机械和热电化学性能。通过引入甜菜碱两性离子的霍夫迈斯特效应和多种非共价相互作用,传统脆性明胶水凝胶电解质的机械强度从50 kPa大幅提高到440 kPa,具有接近250%的高拉伸性。同时,甜菜碱两性离子强烈影响[Fe(CN)]离子的溶剂化结构,从而扩大熵差并将热电化学塞贝克系数从1.47提高到2.2 mV K。所得的准固态TECs表现出0.48 mW m K的归一化输出功率密度,与未进行两性离子调控的同类产品相比,整体性能有显著提高。固有的热可逆特性还使TECs能够通过溶胶-凝胶转变反复自我恢复,确保在极端机械损伤情况下TECs的可靠能量输出甚至循环利用。进一步设计了一种由18个独立TECs组成的能量自主智能手套,它可以同时监测任何触摸物体上不同位置的温度,在可穿戴应用中显示出巨大潜力。