Wang Chi, Zhou Yingge
State University of New York at Binghamton, Binghamton, New York, USA.
Biotechnol Bioeng. 2025 Oct;122(10):2874-2887. doi: 10.1002/bit.70007. Epub 2025 Jun 29.
Creating internal vascular networks within hydrogel scaffolds is crucial for providing the encapsulated cells with the necessary nutrients, oxygen, and metabolic exchange. Current methods for hydrogel scaffold fabrication face significant hurdles, including the challenge of forming sufficient internal channels, achieving precise scaffold geometry, and maintaining high cell viability, often compromised by the fabrication process and properties of the polymer materials used. Stereolithography (SLA) emerges as a promising 3D printing technique due to its exceptional precision, efficiency, and resolution, allowing for the creation of complex geometries with fine detail. This paper explores the application of SLA as a novel strategy to fabricate hydrogel scaffolds with interconnected small diameter channels, surpassing the capabilities of fused deposition modeling method to create templates. The encapsulated fibroblasts grown in the hydrogel scaffold containing channels showed significantly elevated cell viability compared to the ones without any channels. The capability of this SLA-assisted strategy to create channel structures with encapsulated cells demonstrate significant potential for generating 3D artificial tissue composites with precisely controlled micron-scale channels.
在水凝胶支架内创建内部血管网络对于为封装的细胞提供必要的营养物质、氧气和代谢交换至关重要。当前水凝胶支架制造方法面临重大障碍,包括形成足够内部通道的挑战、实现精确的支架几何形状以及维持高细胞活力,这些往往会因所使用的聚合物材料的制造工艺和特性而受到影响。立体光刻(SLA)作为一种有前途的3D打印技术脱颖而出,因为它具有卓越的精度、效率和分辨率,能够创建具有精细细节的复杂几何形状。本文探讨了SLA作为一种新颖策略来制造具有相互连接的小直径通道的水凝胶支架的应用,超越了熔融沉积建模方法创建模板的能力。与没有任何通道的水凝胶支架相比,在含有通道的水凝胶支架中生长的封装成纤维细胞显示出显著提高的细胞活力。这种SLA辅助策略创建带有封装细胞的通道结构的能力证明了生成具有精确控制的微米级通道的3D人工组织复合材料的巨大潜力。