Martínez-Fernández Marcos, Hartmann Yannic, Schmidt Bernd M
Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
Angew Chem Int Ed Engl. 2025 Aug 25;64(35):e202509618. doi: 10.1002/anie.202509618. Epub 2025 Aug 1.
Confined nanospaces play a fundamental role in nature, inspiring synthetic analogues that emulate biological precision and efficiency. Among these, porous crystalline materials such as covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and molecular cage compounds have emerged as powerful platforms for catalysis, separation, and energy storage. Recent developments highlight the potential of porous organic cages (POCs) as modular building blocks for the construction of advanced materials. In this Minireview, their integration into extended frameworks, such as Cage-COFs and Cage-MOFs, is described, as they allow precise control over porosity and enhance chemical robustness. These hybrids merge the structural regularity of COFs with the discrete functionality of cages, enabling the design of lightweight, hierarchically organised materials. In addition, cage-containing polymers and supramolecular frameworks are discussed. Collectively, these developments position POCs as versatile synthons for next-generation porous materials, unlocking pathways toward functional, adaptive, and recyclable architectures.
受限纳米空间在自然界中发挥着基础性作用,激发了模拟生物精准性和效率的合成类似物。其中,共价有机框架(COF)、金属有机框架(MOF)和分子笼化合物等多孔晶体材料已成为催化、分离和能量存储的强大平台。最近的进展突出了多孔有机笼(POC)作为构建先进材料的模块化构件的潜力。在这篇小型综述中,描述了它们如何整合到扩展框架中,如笼状COF和笼状MOF,因为它们能够精确控制孔隙率并增强化学稳定性。这些杂化材料将COF的结构规整性与笼的离散功能性相结合,实现了轻质、层次有序材料的设计。此外,还讨论了含笼聚合物和超分子框架。总体而言,这些进展将POC定位为下一代多孔材料的通用合成子,为功能性、适应性和可回收架构开辟了道路。