Suppr超能文献

揭示植物生长促进生化途径的遗传基础以及作为生物刺激剂的首次基因组见解。

Unveiling the genetic basis of biochemical pathways of plant growth promotion in and the first genomic insights into as a biostimulant.

作者信息

Dushku Esmeralda, Kotzamanidis Charalampos, Kargas Athanasios, Fanara-Lolou Maria-Eleni, Giantzi Virginia, Krystallidou Evdokia, Zdragas Antonios, Malousi Andigoni

机构信息

Veterinary Research Institute of Thessaloniki, Hellenic Agricultural Organisation-DEMETER, Campus of Thermi, Thermi 570 01, Greece.

Perrotis College, Division of the American Farm School, Thermi 57001, Thessaloniki, Greece.

出版信息

Curr Res Microb Sci. 2025 Jun 10;9:100419. doi: 10.1016/j.crmicr.2025.100419. eCollection 2025.

Abstract

species are among the most promising plant growth-promoting bacteria (PGPB) due to their adaptability to various environmental niches and extensive biosynthetic capabilities. Despite the available data on the PGP-traits (PGPTs) of , the genetic basis underlying their beneficial effects remains largely unexplored. In this study, a comparative genomic analysis of three and one strains, isolated from the maize rhizosphere, is presented to elucidate the molecular mechanisms behind their PGP-traits. All strains exhibited multiple PGP-traits, including phosphate solubilization, phytohormone and siderophore production, growth in nitrogen-free medium, stress tolerance, and biofilm formation. Phylogenomic analysis revealed that plant-associated strains have higher genetic similarity, emphasizing niche-specific evolution. Genome analyses revealed strain- and species-specific adaptations, particularly in relation to nutrient acquisition and abiotic stress response mechanisms. strains encoded alternative sigma factors (SigB, SigM, SigW) enabling enhanced salt tolerance, whereas lacked this system and relied on conventional osmoprotective strategies. The strains utilized different tryptophan-dependent (IAN, IAM or IPyA) pathways for auxin biosynthesis and differed in phosphate solubilization ability, which can be attributed to upstream and missense variants in genes affecting acid metabolism (, and and phosphatase () activity. Iron uptake bacillibactin-siderophores was exclusive to . The inability of the strain to acquire iron was associated with structural variants (absence of gene) within the bacillibactin biosynthetic gene cluster. This work provides new insights into the molecular basis of PGP traits in and supports the development of -based bioinoculants for sustainable agriculture.

摘要

由于其对各种环境生态位的适应性和广泛的生物合成能力,[具体物种名称未给出]是最有前景的植物促生细菌(PGPB)之一。尽管已有关于[具体物种名称未给出]的植物促生特性(PGPTs)的数据,但其有益作用背后的遗传基础在很大程度上仍未被探索。在本研究中,对从玉米根际分离的三株[具体物种名称未给出]和一株[具体物种名称未给出]菌株进行了比较基因组分析,以阐明其植物促生特性背后的分子机制。所有菌株都表现出多种植物促生特性,包括磷溶解、植物激素和铁载体产生、在无氮培养基中生长、胁迫耐受性和生物膜形成。系统发育基因组分析表明,与植物相关的菌株具有更高的遗传相似性,强调了生态位特异性进化。基因组分析揭示了菌株和物种特异性适应,特别是在养分获取和非生物胁迫响应机制方面。[具体物种名称未给出]菌株编码替代西格玛因子(SigB、SigM、SigW),能够增强耐盐性,而[具体物种名称未给出]缺乏该系统,依赖于传统的渗透保护策略。这些菌株利用不同的色氨酸依赖性(IAN、IAM或IPyA)途径进行生长素生物合成,并且在磷溶解能力上存在差异,这可归因于影响酸代谢([相关基因未给出]、[相关基因未给出]和磷酸酶([相关基因未给出])活性的基因中的上游和错义变体。铁摄取[具体物质未给出]杆菌铁载体是[具体物种名称未给出]所特有的。[具体物种名称未给出]菌株无法获取铁与杆菌铁载体生物合成基因簇内的结构变体([相关基因未给出]基因缺失)有关。这项工作为[具体物种名称未给出]植物促生特性的分子基础提供了新的见解,并支持开发基于[具体物种名称未给出]的生物肥料用于可持续农业。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/008f/12206126/96e4e1d92b27/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验