Suppr超能文献

KD_MultiSucc:结合多教师知识蒸馏和词嵌入用于蛋白质琥珀酰化位点的跨物种预测

KD_MultiSucc: incorporating multi-teacher knowledge distillation and word embeddings for cross-species prediction of protein succinylation sites.

作者信息

Tran Thi-Xuan, Nguyen Thi-Tuyen, Le Nguyen-Quoc-Khanh, Nguyen Van-Nui

机构信息

Faculty of Foundation Studies, Thai Nguyen University of Economics and Business Administration, Thai Nguyen City, 2500000, Vietnam.

Faculty of Information Technology, Thai Nguyen University of Information and Communication Technology, Thai Nguyen City, 2500000, Vietnam.

出版信息

Biol Methods Protoc. 2025 May 28;10(1):bpaf041. doi: 10.1093/biomethods/bpaf041. eCollection 2025.

Abstract

Protein succinylation is a vital post-translational modification (PTM) that involves the covalent attachment of a succinyl group (-CO-CH2-CH2-CO-) to the lysine residue of a protein molecule. The mechanism underlying the succinylation process plays a critical role in regulating protein structure, stability, and function, contributing to various biological processes, including metabolism, gene expression, and signal transduction. Succinylation has also been associated with numerous diseases, such as cancer, neurodegenerative disorders, and metabolic syndromes. Due to its important roles, the accurate prediction of succinylation sites is essential for a comprehensive understanding of the mechanisms underlying succinylation. Although research on the identification of protein succinylation sites has been increasing, experimental methods remain time-consuming and costly, underscoring the need for efficient computational approaches. In this study, we present KD_MultiSucc, a model for cross-species prediction of succinylation sites using Multi-Teacher Knowledge Distillation and Word Embedding. The proposed method leverages the strengths of both Knowledge Distillation and Word Embedding techniques to reduce computational complexity while maintaining high accuracy in predicting protein succinylation sites across species. Experimental results demonstrate that the proposed predictor outperforms existing predictors, providing a valuable contribution to PTM research and biomedical applications. To assist readers and researchers, the codes and resources related to this work have been made freely accessible on GitHub at https://github.com/nuinvtnu/KD_MultiSucc/.

摘要

蛋白质琥珀酰化是一种重要的翻译后修饰(PTM),它涉及将琥珀酰基团(-CO-CH2-CH2-CO-)共价连接到蛋白质分子的赖氨酸残基上。琥珀酰化过程的潜在机制在调节蛋白质结构、稳定性和功能方面起着关键作用,有助于各种生物过程,包括代谢、基因表达和信号转导。琥珀酰化还与多种疾病相关,如癌症、神经退行性疾病和代谢综合征。由于其重要作用,准确预测琥珀酰化位点对于全面理解琥珀酰化的潜在机制至关重要。尽管关于蛋白质琥珀酰化位点鉴定的研究不断增加,但实验方法仍然耗时且成本高昂,这凸显了高效计算方法的必要性。在本研究中,我们提出了KD_MultiSucc,这是一种使用多教师知识蒸馏和词嵌入进行跨物种琥珀酰化位点预测的模型。所提出的方法利用了知识蒸馏和词嵌入技术的优势,以降低计算复杂度,同时在跨物种预测蛋白质琥珀酰化位点时保持高精度。实验结果表明,所提出的预测器优于现有预测器,为PTM研究和生物医学应用做出了有价值的贡献。为了帮助读者和研究人员,与这项工作相关的代码和资源已在GitHub上免费提供,网址为https://github.com/nuinvtnu/KD_MultiSucc/。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f4e/12202750/735cee46f935/bpaf041f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验