Yang Chen Xi, Sin Don D, Ng Raymond T
Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.
Department of Bioinformatics, Faculty of Science, University of British Columbia, Vancouver, BC, Canada.
Genome Biol. 2024 Dec 2;25(1):304. doi: 10.1186/s13059-024-03441-1.
While spatial transcriptomics offer valuable insights into gene expression patterns within the spatial context of tissue, many technologies do not have a single-cell resolution. Here, we present SMART, a marker gene-assisted deconvolution method that simultaneously infers the cell type-specific gene expression profile and the cellular composition at each spot. Using multiple datasets, we show that SMART outperforms the existing methods in realistic settings. It also provides a two-stage approach to enhance its performance on cell subtypes. The covariate model of SMART enables the identification of cell type-specific differentially expressed genes across conditions, elucidating biological changes at a single-cell-type resolution.
虽然空间转录组学能在组织的空间背景下为基因表达模式提供有价值的见解,但许多技术没有单细胞分辨率。在此,我们提出了SMART,一种标记基因辅助反卷积方法,它能同时推断每个点的细胞类型特异性基因表达谱和细胞组成。使用多个数据集,我们表明SMART在实际场景中优于现有方法。它还提供了一种两阶段方法来提高其在细胞亚型上的性能。SMART的协变量模型能够识别不同条件下细胞类型特异性差异表达基因,以单细胞类型分辨率阐明生物学变化。