文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

整合单细胞和批量RNA数据以鉴定病毒性心肌炎中的关键细胞类型和生物标志物:一项整合生物信息学分析

Integration of single-cell and bulk RNA data to identify key cell types and biomarkers in viral myocarditis: An integrated bioinformatics analysis.

作者信息

Xie Fei, Li Junquan

机构信息

Department of Cardiac Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China.

出版信息

Medicine (Baltimore). 2025 Jun 27;104(26):e43033. doi: 10.1097/MD.0000000000043033.


DOI:10.1097/MD.0000000000043033
PMID:40587683
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12212817/
Abstract

Viral myocarditis (VMC), a multifaceted pathological condition predominantly triggered by viral infections, has emerged as a major worldwide healthcare concern due to its intricate pathogenesis and substantial disease burden. Although the centrality of immune dysregulation in driving VMC progression is well-established, the precise identities of distinct immune cell subsets and their molecular mediators governing pathological progression continue to present significant knowledge gaps. Single-cell datasets were integrated using quality control, batch correction, and normalization. The FindAllMarkers function identified marker genes for each cluster. Cell types were annotated based on literature-derived marker genes. DESeq2 was employed to identify differentially expressed genes in T cells. CellChat was used to explore intercellular communication and identify key ligand-receptor signaling pathways. Receiver operating characteristic curves assessed the predictive performance of key factors in a validation cohort. T cells were re-annotated for higher-resolution subtyping, and pseudotime analysis depicted the cell trajectories of T cell subtypes. Integrated single-cell data revealed a comprehensive single-cell atlas of VMC. Mechanistic delineation of T cell as principal pathogenic effectors emerged through multi-omics interrogation incorporating single-cell transcriptomic profiling and pathological trajectory reconstruction; functional genomics analyses further substantiated their cardinal involvement in cardiotropic viral pathogenesis. Additionally, communication analysis highlighted CCL as a critical immune regulatory pathway for T cell interactions in VMC. Significant upregulation of CCL3 was confirmed in the validation cohort, establishing it as a potential biomarker and therapeutic target for VMC. Pseudotime analysis and re-annotation of T cell subpopulations revealed significant enrichment of T.8EFF.OT1LISO and T.Tregs in VMC. This study identifies T cells as key immune players in VMC, with CCL3 proposed as a novel biomarker for the condition.

摘要

病毒性心肌炎(VMC)是一种主要由病毒感染引发的多方面病理状况,由于其复杂的发病机制和巨大的疾病负担,已成为全球主要的医疗保健问题。尽管免疫失调在推动VMC进展中的核心作用已得到充分确立,但不同免疫细胞亚群及其控制病理进展的分子介质的确切身份仍然存在重大知识空白。使用质量控制、批次校正和归一化方法对单细胞数据集进行整合。FindAllMarkers函数识别每个簇的标记基因。根据文献来源的标记基因对细胞类型进行注释。使用DESeq2识别T细胞中差异表达的基因。使用CellChat探索细胞间通讯并识别关键的配体-受体信号通路。通过受试者工作特征曲线评估验证队列中关键因素的预测性能。对T细胞进行重新注释以实现更高分辨率的亚型分类,伪时间分析描绘了T细胞亚型的细胞轨迹。整合的单细胞数据揭示了VMC的综合单细胞图谱。通过结合单细胞转录组分析和病理轨迹重建的多组学研究,明确了T细胞作为主要致病效应器的机制;功能基因组学分析进一步证实了它们在嗜心性病毒发病机制中的核心作用。此外,通讯分析突出了CCL作为VMC中T细胞相互作用的关键免疫调节途径。在验证队列中证实CCL3显著上调,将其确立为VMC的潜在生物标志物和治疗靶点。T细胞亚群的伪时间分析和重新注释显示VMC中T.8EFF.OT1LISO和T.Tregs显著富集。本研究确定T细胞是VMC中的关键免疫参与者,提出CCL3作为该疾病的新型生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb0/12212817/e85aff561b76/medi-104-e43033-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb0/12212817/04071dca7eb3/medi-104-e43033-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb0/12212817/f08a8cec9ce8/medi-104-e43033-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb0/12212817/6eadd787734a/medi-104-e43033-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb0/12212817/4115c72a4c2e/medi-104-e43033-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb0/12212817/3fda7d469e88/medi-104-e43033-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb0/12212817/e85aff561b76/medi-104-e43033-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb0/12212817/04071dca7eb3/medi-104-e43033-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb0/12212817/f08a8cec9ce8/medi-104-e43033-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb0/12212817/6eadd787734a/medi-104-e43033-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb0/12212817/4115c72a4c2e/medi-104-e43033-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb0/12212817/3fda7d469e88/medi-104-e43033-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb0/12212817/e85aff561b76/medi-104-e43033-g006.jpg

相似文献

[1]
Integration of single-cell and bulk RNA data to identify key cell types and biomarkers in viral myocarditis: An integrated bioinformatics analysis.

Medicine (Baltimore). 2025-6-27

[2]
Molecular feature-based classification of retroperitoneal liposarcoma: a prospective cohort study.

Elife. 2025-5-23

[3]
Comprehensive single-cell chromatin and transcriptomic profiling of peripheral immune cells in nonsegmental vitiligo.

Br J Dermatol. 2025-6-20

[4]
Integrated machine learning and single-cell RNA sequencing reveal COL4A2 and CXCL6 as oxidative stress-associated biomarkers in periodontitis.

Front Immunol. 2025-6-5

[5]
Comprehensive Analysis of Differences in N6-Methyladenosine RNA Methylation Groups in CVB3-Induced Viral Myocarditis and Identification of the Anti-Apoptotic Role of RBM15B.

J Inflamm Res. 2025-6-17

[6]
Integrative single-cell RNA sequencing and mendelian randomization analysis reveal the potential role of synaptic vesicle cycling-related genes in Alzheimer's disease.

J Prev Alzheimers Dis. 2025-5

[7]
AI-based Hepatic Steatosis Detection and Integrated Hepatic Assessment from Cardiac CT Attenuation Scans Enhances All-cause Mortality Risk Stratification: A Multi-center Study.

medRxiv. 2025-6-11

[8]
Integrative analysis of T cell-associated markers in Ewing sarcoma reveals prognostic signatures and immune dynamics.

Front Immunol. 2025-6-18

[9]
Integrated multi-omics and machine learning reveals immune-metabolic signatures in osteoarthritis: from bulk RNA-seq to single-cell resolution.

Front Immunol. 2025-6-16

[10]
Explainable machine learning reveals ribosome biogenesis biomarkers in preeclampsia risk prediction.

Front Immunol. 2025-6-9

本文引用的文献

[1]
GPR15-mediated T cell recruitment during acute viral myocarditis facilitated virus elimination and improved outcome.

Nat Cardiovasc Res. 2024-1

[2]
CXCL4/CXCR3 axis regulates cardiac fibrosis by activating TGF-β1/Smad2/3 signaling in mouse viral myocarditis.

Immun Inflamm Dis. 2024-4

[3]
Self-recruited neutrophils trigger over-activated innate immune response and phenotypic change of cardiomyocytes in fulminant viral myocarditis.

Cell Discov. 2023-10-10

[4]
Inhibitor of CD147 Suppresses T Cell Activation and Recruitment in CVB3-Induced Acute Viral Myocarditis.

Viruses. 2023-5-10

[5]
Spatiotemporal transcriptomics reveals pathogenesis of viral myocarditis.

Nat Cardiovasc Res. 2022-10

[6]
CCL17 Protects Against Viral Myocarditis by Suppressing the Recruitment of Regulatory T Cells.

J Am Heart Assoc. 2023-2-21

[7]
Benchmarking methods for detecting differential states between conditions from multi-subject single-cell RNA-seq data.

Brief Bioinform. 2022-9-20

[8]
Identification of Pathogenic Immune Cell Subsets Associated With Checkpoint Inhibitor-Induced Myocarditis.

Circulation. 2022-7-26

[9]
The absence of B cells disrupts splenic and myocardial Treg homeostasis in coxsackievirus B3-induced myocarditis.

Clin Exp Immunol. 2022-5-13

[10]
Dissecting the cellular landscape and transcriptome network in viral myocarditis by single-cell RNA sequencing.

iScience. 2022-2-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索