Suppr超能文献

一种在卷积神经网络中使用自适应边缘差异和知识转移的脑电图运动想象分类混合方法。

A hybrid approach for EEG motor imagery classification using adaptive margin disparity and knowledge transfer in convolutional neural networks.

作者信息

Vadivelan D Senthil, Sethuramalingam Prabhu

机构信息

Department of Mechanical Engineering, SRM Institute of Science and Technology, KTR Campus, Kattankulathur, Chennai, 603 203, India.

Robotics Lab, Department of Mechanical Engineering, SRM Institute of Science and Technology, KTR Campus, Kattankulathur, Chennai, 603 203, India.

出版信息

Comput Biol Med. 2025 Sep;195:110675. doi: 10.1016/j.compbiomed.2025.110675. Epub 2025 Jun 29.

Abstract
  • Motor Imagery (MI) using Electroencephalography (EEG) is essential in Brain-Computer Interface (BCI) technology, enabling interaction with external devices by interpreting brain signals. Recent advancements in Convolutional Neural Networks (CNNs) have significantly improved EEG classification tasks; however, traditional CNN-based methods rely on fixed convolution modes and kernel sizes, limiting their ability to capture diverse temporal and spatial features from one-dimensional EEG-MI signals. This paper introduces the Adaptive Margin Disparity with Knowledge Transfer 2D Model (AMD-KT2D), a novel framework designed to enhance EEG-MI classification. The process begins by transforming EEG-MI signals into 2D time-frequency representations using the Optimized Short-Time Fourier Transform (OptSTFT), which optimizes windowing functions and time-frequency resolution to preserve dynamic temporal and spatial features. The AMD-KT2D framework integrates a guide-learner architecture where Improved ResNet50 (IResNet50), pre-trained on a large-scale dataset, extracts high-level spatial-temporal features, while a Customized 2D Convolutional Neural Network (C2DCNN) captures multi-scale features. To ensure feature alignment and knowledge transfer, the Adaptive Margin Disparity Discrepancy (AMDD) loss function minimizes domain disparity, facilitating multi-scale feature learning in C2DCNN. The optimized learner model then classifies EEG-MI images into left and right-hand movement motor imagery classes. Experimental results on the real-world EEG-MI dataset collected using the Emotiv Epoc Flex system demonstrated that AMD-KT2D achieved a classification accuracy of 96.75 % for subject-dependent and 92.17 % for subject-independent, showcasing its effectiveness in leveraging domain adaptation, knowledge transfer, and multi-scale feature learning for advanced EEG-based BCI applications.
摘要
  • 使用脑电图(EEG)的运动想象(MI)在脑机接口(BCI)技术中至关重要,它能够通过解读脑信号与外部设备进行交互。卷积神经网络(CNN)的最新进展显著改善了EEG分类任务;然而,传统的基于CNN的方法依赖于固定的卷积模式和内核大小,限制了它们从一维EEG-MI信号中捕获多样的时间和空间特征的能力。本文介绍了具有知识转移的自适应边缘差异二维模型(AMD-KT2D),这是一个旨在增强EEG-MI分类的新颖框架。该过程首先使用优化的短时傅里叶变换(OptSTFT)将EEG-MI信号转换为二维时频表示,OptSTFT优化了窗函数和时频分辨率以保留动态的时间和空间特征。AMD-KT2D框架集成了一个引导学习器架构,其中在大规模数据集上预训练的改进型ResNet50(IResNet50)提取高级时空特征,而定制的二维卷积神经网络(C2DCNN)捕获多尺度特征。为确保特征对齐和知识转移,自适应边缘差异差异(AMDD)损失函数最小化域差异,促进C2DCNN中的多尺度特征学习。然后,优化后的学习器模型将EEG-MI图像分类为左手和右手运动想象类别。使用Emotiv Epoc Flex系统收集的真实世界EEG-MI数据集的实验结果表明,AMD-KT2D在依赖受试者的情况下实现了96.75%的分类准确率,在独立于受试者的情况下实现了92.17%的分类准确率,展示了其在利用域适应、知识转移和多尺度特征学习用于基于EEG的高级BCI应用方面的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验