Suppr超能文献

利用基于FastViT的知识蒸馏与EfficientNet-B0进行糖尿病视网膜病变严重程度分类。

Leveraging FastViT based knowledge distillation with EfficientNet-B0 for diabetic retinopathy severity classification.

作者信息

Rautaray Jyotirmayee, Ali Ali B M, Kandpal Meenakshi, Mishra Pranati, Rashid Rzgar Farooq, Alimova Farzona, Kallel Mohamed, Batool Nadia

机构信息

Department of computer science and engineering, Odisha University of Technology and Research, Bhubaneswar, Odisha, India.

Air Conditioning Engineering Department, College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq.

出版信息

SLAS Technol. 2025 Aug;33:100325. doi: 10.1016/j.slast.2025.100325. Epub 2025 Jun 28.

Abstract

Diabetic retinopathy (DR) remains a key contributor to eye impairment worldwide, requiring the development of efficient and accurate deep learning models for automated diagnosis. This study presents FastEffNet, a novel framework that leverages transformer-based knowledge distillation (KD) to enhance DR severity classification while reducing computational complexity. The proposed approach employs FastViT-MA26 as the teacher model and EfficientNet-B0 as the student model, striking the ideal mix between accuracy and computational efficiency. APTOS blindness detection dataset comprising 3662 images across five severity classes is collected, pre-processed, normalized, split and augmented to address class imbalance. The teacher model undergoes training and validation before transferring its knowledge to the student model, enabling the latter to approximate the teacher's performance while maintaining a lightweight architecture. To comprehensively assess the efficacy of the proposed framework, additional student models-including HGNet, ResNet50, MobileNetV3, and DeiT-are analysed for comparative assessment. Model interpretability is enhanced through Grad-CAM++ visualizations, which highlight critical retinal regions influencing DR severity classification. Several measures are used to evaluate performance, including accuracy, precision, recall, F1-score, Cohen's Kappa Score (CKS), Weighted Kappa Score (WKS), and Matthews Correlation Coefficient (MCC), ensuring a robust assessment. Among all student models, EfficientNet-B0 achieves the highest classification accuracy of 95.39 %, 95.43 % precision, recall of 95.39 %, F1-score of 95.37 %, CKS of 0.94, WKS of 0.97, MCC of 0.94, AUC of 0.99, and a KD loss of 0.17, with a computational cost of 0.38 G FLOPs. These results demonstrate its effectiveness as an optimized lightweight model for DR detection. The findings emphasize the potential of KD-based lightweight models in attaining high diagnostic accuracy while reducing computational complexity, paving the way for scalable and cost-effective DR screening solutions.

摘要

糖尿病视网膜病变(DR)仍是全球视力损害的主要原因,需要开发高效准确的深度学习模型用于自动诊断。本研究提出了FastEffNet,这是一种新颖的框架,利用基于Transformer的知识蒸馏(KD)来增强DR严重程度分类,同时降低计算复杂度。所提出的方法采用FastViT-MA26作为教师模型,EfficientNet-B0作为学生模型,在准确性和计算效率之间取得了理想的平衡。收集了包含3662张跨五个严重程度类别的图像的APTOS失明检测数据集,进行预处理、归一化、分割和增强,以解决类别不平衡问题。教师模型在将其知识转移到学生模型之前进行训练和验证,使后者能够在保持轻量级架构的同时接近教师的性能。为了全面评估所提出框架的有效性,还分析了其他学生模型,包括HGNet、ResNet50、MobileNetV3和DeiT,进行比较评估。通过Grad-CAM++可视化增强了模型的可解释性,突出了影响DR严重程度分类的关键视网膜区域。使用了多种指标来评估性能,包括准确率、精确率、召回率、F1分数、科恩卡帕分数(CKS)、加权卡帕分数(WKS)和马修斯相关系数(MCC),以确保进行稳健的评估。在所有学生模型中,EfficientNet-B0实现了最高的分类准确率,为95.39%;精确率为95.43%,召回率为95.39%,F1分数为95.37%,CKS为0.94,WKS为0.97,MCC为0.94,AUC为0.99,KD损失为0.17,计算成本为0.38 G FLOPs。这些结果证明了它作为一种优化的轻量级DR检测模型的有效性。研究结果强调了基于KD的轻量级模型在实现高诊断准确性同时降低计算复杂度方面的潜力,为可扩展且经济高效的DR筛查解决方案铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验