Ali Hassan, Shifa Noora, Benlamri Rachid, Farooque Aitazaz A, Yaqub Raziq
Centre of Excellence for Sustainability and Food Security, University of Doha for Science and Technology, Doha, 24449, Qatar.
Department of Electrical Engineering, University of Doha for Science and Technology, Doha, 24449, Qatar.
Sci Rep. 2025 Jul 16;15(1):25732. doi: 10.1038/s41598-025-04479-2.
Precise classification and detection of apple diseases are essential for efficient crop management and maximizing yield. This paper presents a fine-tuned EfficientNet-B0 convolutional neural network (CNN) for the automated classification of apple leaf diseases. The model builds upon a pre-trained EfficientNet-B0 base, enhanced through architectural modifications such as the integration of a global max pooling (GMP) layer, dropout, regularization, and full-model fine-tuning. To address class imbalance and improve generalization, the study adopts a holistic training strategy that integrates data augmentation, stratified data splitting, and class weighting, alongside transfer learning. The model is evaluated on the PlantVillage (PV) dataset and a curated Apple PV (APV) dataset and compared against EfficientNet-B0, EfficientNet-B3, Inception-v3, ResNet50, and VGG16 models. The fine-tuned model demonstrates outstanding test accuracies of 99.69% and 99.78% for classifying plant diseases using the APV and PV datasets, respectively. The fine-tuned model outperforms EfficientNet-B0, EfficientNet-B3, and VGG16 on both datasets and shows superior performance compared to Inception-v3 and ResNet-50 on the PV dataset. Both EfficientNet-B0 and the fine-tuned model demonstrate the lowest memory consumption and floating-point operations per second (FLOPs). Also, as compared to the EfficientNet-B0 model, the fine-tuned model achieves an 11% increase in accuracy on the APV dataset and a 49.5% accuracy improvement on the PV dataset, with approximately a 7-8% increase in both memory usage and FLOPs. The fine-tuned model thus emerges as an effective solution for plant leaf disease classification, delivering outstanding accuracy with optimized memory consumption and FLOPs, making it suitable for resource-constrained environments. This study demonstrates that fine-tuned CNN approaches, when combined with transfer learning, advanced data pre-processing, and architectural optimizations, can significantly enhance the accuracy of diseased leaf classification in crops with efficient implementation in limited-resource settings.
精确分类和检测苹果病害对于高效的作物管理和实现产量最大化至关重要。本文提出了一种经过微调的EfficientNet-B0卷积神经网络(CNN),用于苹果叶部病害的自动分类。该模型基于预训练的EfficientNet-B0基础构建,通过诸如集成全局最大池化(GMP)层、随机失活、正则化和全模型微调等架构修改进行了增强。为了解决类别不平衡问题并提高泛化能力,该研究采用了一种整体训练策略,该策略集成了数据增强、分层数据分割和类别加权,同时结合了迁移学习。该模型在植物村(PV)数据集和精心策划的苹果PV(APV)数据集上进行评估,并与EfficientNet-B0、EfficientNet-B3、Inception-v3、ResNet50和VGG16模型进行比较。微调后的模型在使用APV和PV数据集对植物病害进行分类时,分别展示了99.69%和99.78%的出色测试准确率。微调后的模型在两个数据集上均优于EfficientNet-B0、EfficientNet-B3和VGG16,并且在PV数据集上与Inception-v3和ResNet-50相比表现出卓越性能。EfficientNet-B0和微调后的模型均展示出最低的内存消耗和每秒浮点运算次数(FLOPs)。此外,与EfficientNet-B0模型相比,微调后的模型在APV数据集上准确率提高了11%,在PV数据集上准确率提高了49.5%,同时内存使用量和FLOPs均增加了约7-8%。因此,微调后的模型成为植物叶部病害分类的有效解决方案,在优化内存消耗和FLOPs的情况下提供了出色的准确率,使其适用于资源受限的环境。这项研究表明,经过微调的CNN方法与迁移学习、先进的数据预处理和架构优化相结合时,可以在有限资源环境中高效实现的情况下,显著提高作物病害叶片分类的准确率。