Ansari Hamedani Ali, Cetiner Busra, Yarar Kaplan Begüm, Alkan Gürsel Selmiye, Yürüm Alp
Sabanci University Nanotechnology Research and Application Center (SUNUM), Orta Mahalle, Üniversite Caddesi, No: 27, Orhanli, Tuzla, 34956, Istanbul, Türkiye.
Department of Materials Science and Nanoengineering, Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi, No: 27, Orhanli, Tuzla, 34956, Istanbul, Türkiye.
Chemphyschem. 2025 Aug 23;26(16):e202401136. doi: 10.1002/cphc.202401136. Epub 2025 Jun 30.
Li-sulfur (LiS) batteries are potential alternatives to Li-ion batteries due to the ampleness of the sulfur and their higher gravimetric energy density. However, in conventional LiS batteries, the dissolution and redox shuttling of the formed lithium polysulfide species (LiPSs) pose disadvantages regarding capacity retention. Herein, free-standing nanofiber mats are fabricated using polyacrylonitrile (PAN) and titanium tetraisopropoxide (TTIP) to address the shuttling of LiPSs. After the subsequent heat treatment of the nanofiber mats, denoted as stabilization and carbonization, they are introduced into the LiS cells between the sulfur electrode and the separator as an interlayer to intercept the shuttling LiPSs. Material characterizations confirm an ultrafine distribution of TiO in the fibers and also the formation of a thin layer of SiO on them after carbonization. Constant-current discharge/charge cycling shows that using each of the developed interlayers leads to higher capacity retention compared to the case without any interlayer (100th cycle discharge capacity of 695 mAh g for stabilized PAN-TiO and 749 mAh g for CNF-TiO compared to 495 mAh g for the cell without an interlayer). The improved cycling performance with interlayers is attributed to the adsorption and conversion of LiPSs thanks to their nanocomposite structures.
锂硫(LiS)电池因其硫资源丰富且具有更高的重量能量密度,是锂离子电池的潜在替代品。然而,在传统的锂硫电池中,所形成的多硫化锂物种(LiPSs)的溶解和氧化还原穿梭对容量保持率存在不利影响。在此,使用聚丙烯腈(PAN)和四异丙醇钛(TTIP)制备了独立的纳米纤维垫,以解决LiPSs的穿梭问题。在对纳米纤维垫进行后续的热处理(即稳定化和碳化)后,将它们作为中间层引入到锂硫电池的硫电极和隔膜之间,以拦截穿梭的LiPSs。材料表征证实了纤维中TiO的超细分布以及碳化后在其上形成的SiO薄层。恒流充放电循环表明,与没有任何中间层的情况相比,使用每个开发的中间层都能实现更高的容量保持率(稳定化的PAN-TiO在第100次循环时的放电容量为695 mAh g,CNF-TiO为749 mAh g,而没有中间层的电池为495 mAh g)。中间层改善的循环性能归因于其纳米复合结构对LiPSs的吸附和转化。