Suppr超能文献

用于锂电池功能中间层的混合离子-电子导体的冰模板合成

Ice-Templated Synthesis of Mixed Ion-Electron Conductors for Functional Interlayers in Lithium Batteries.

作者信息

Choi Woongsik, Shim Chaeyoung, Sim Geunhong, Park Moon Jeong

机构信息

Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang, 37673, Republic of Korea.

出版信息

ChemSusChem. 2025 Jul 2:e2501138. doi: 10.1002/cssc.202501138.

Abstract

Despite ongoing efforts to develop sustainable lithium batteries with eco-friendly cathode materials, such as organic or sulfur-based compounds, challenges such as poor charge transport and severe redox shuttling persist. Interface engineering at the electrode-electrolyte interface remains crucial for improving the performance of these batteries. Herein, an ice-templated synthesis of mixed ion-electron-conducting interlayers design is presented to enhance redox kinetics and cycling stability in lithium batteries. The interlayers consist of hierarchically porous conducting polymer nanosheets with Li-conducting polymeric nanoparticles anchored to the pore walls. This architecture simultaneously enhances electrical conductivity (6.0 S cm ) and ionic conductivity (0.22 mS cm ), and effectively mitigates shuttle effects by confining soluble redox-active species within the porous interlayer. When applied to lithium-organic batteries with CO cathodes, the batteries achieve a high specific capacity of 557 mAh g at 48 mA g . In lithium-sulfur cells with elemental sulfur cathodes, the cells deliver 912 mAh g at 167 mA g , 789 mAh g at 0.84 A g , 717 mAh g at 1.7 A g , and 544 mAh g at 3.3 A g with cycling stability over 120 cycles. This study establishes a scalable and adaptable platform for the advancement of sustainable lithium battery technologies.

摘要

尽管人们不断努力开发具有环保阴极材料(如有机或硫基化合物)的可持续锂电池,但诸如电荷传输不佳和严重的氧化还原穿梭等挑战仍然存在。电极-电解质界面处的界面工程对于提高这些电池的性能仍然至关重要。在此,提出了一种冰模板合成混合离子-电子传导中间层的设计,以增强锂电池中的氧化还原动力学和循环稳定性。中间层由分层多孔导电聚合物纳米片组成,锂导电聚合物纳米颗粒锚定在孔壁上。这种结构同时提高了电导率(6.0 S cm )和离子电导率(0.22 mS cm ),并通过将可溶性氧化还原活性物质限制在多孔中间层内有效地减轻了穿梭效应。当应用于具有CO阴极的锂有机电池时,该电池在48 mA g 时实现了557 mAh g 的高比容量。在具有元素硫阴极的锂硫电池中,该电池在167 mA g 时的放电比容量为912 mAh g ,在0.84 A g 时为789 mAh g ,在1.7 A g 时为,并在3.3 A g 时为544 mAh g ,循环稳定性超过120次循环。这项研究为可持续锂电池技术的进步建立了一个可扩展且适应性强的平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验