Suppr超能文献

大豆叶片检测的自适应标记方法与通用标记方法的对比分析

Comparative analysis of adaptive and general labeling methods for soybean leaf detection.

作者信息

Jeong Yuseok, Kim Song Lim, Thai Thanh Tuan, Le Anh Tuan, Lee Chaewon, Bae Hyo Jun, Choi Inchan, Mansoor Sheikh, Chung Yong Suk, Kim Kyung-Hwan

机构信息

Department of Agricultural Engineering, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, Republic of Korea.

School of Computer Information and Communication Engineering, Kunsan National University, Gunsan, Republic of Korea.

出版信息

Front Plant Sci. 2025 Jun 16;16:1582303. doi: 10.3389/fpls.2025.1582303. eCollection 2025.

Abstract

Soybeans are important due to their nutritional benefits, economic role, agricultural contributions, and various industrial applications. Effective leaf detection plays a crucial role in analyzing soybean growth within precision agriculture. This study examines the influence of different labeling methods on the efficiency of artificial intelligence (AI) based soybean leaf detection. We compare a traditional general labeling technique against a new context-aware method that utilizes information about leaf length and bottom extremities. Both approaches were employed to train a YOLOv5L deep learning model using high-resolution soybean imagery. Results show that the general labeling method excelled with soybean varieties that have wider internodes and distinctly separated leaves. In contrast, the context-aware labeling method outperformed the general approach for medium soybean varieties characterized by narrower internodes and overlapping leaves. By optimizing labeling strategies, the accuracy and efficiency of AI-based soybean growth analysis can be significantly improved, particularly in high-throughput phenotyping systems. Ultimately, the findings suggest that a thoughtful approach to labeling can enhance agricultural management practices, contributing to better crop monitoring and improved yields.

摘要

大豆因其营养价值、经济作用、农业贡献和各种工业应用而具有重要意义。有效的叶片检测在精准农业中分析大豆生长方面起着关键作用。本研究考察了不同标注方法对基于人工智能(AI)的大豆叶片检测效率的影响。我们将一种传统的通用标注技术与一种利用叶片长度和底部末端信息的新的上下文感知方法进行了比较。两种方法都被用于使用高分辨率大豆图像训练一个YOLOv5L深度学习模型。结果表明,通用标注方法在节间较宽且叶片明显分离的大豆品种上表现出色。相比之下,上下文感知标注方法在节间较窄且叶片重叠的中等大豆品种上优于通用方法。通过优化标注策略,可以显著提高基于AI的大豆生长分析的准确性和效率,特别是在高通量表型分析系统中。最终,研究结果表明,精心设计的标注方法可以加强农业管理实践,有助于更好地监测作物并提高产量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a72/12206733/6e353373c2e5/fpls-16-1582303-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验