Wang Jingwen, Wang Binbin, Yin Xitian, Yang Qianxi, Luo Tao, Duan Hongkun, Zhou Shuren, Lan Xinzheng, Wang Ying, Zhang Zhiyong
Key Laboratory of Luminescence & Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China.
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
Small. 2025 Aug;21(34):e2505195. doi: 10.1002/smll.202505195. Epub 2025 Jul 1.
Mercury telluride (HgTe) nanocrystals (NCs) offer adjustable absorption and solution-processable fabrication, making them promising materials for low-cost, high-resolution imaging across a wide infrared (IR) spectrum. However, photodetectors based on HgTe NCs often suffer from high dark current, elevated noise arising from trap states and interface defects, and limited structural tunability, which constrain their sensitivity, dynamic range, and applicability in intelligent vision applications. Here, it is reported a dual-gate carbon nanotubes (CNTs) field-effect transistor incorporating an HgTe NC-based PIN heterojunction as the top gate, which converts incident IR light into a photovoltage that functions as a dynamic optical gate, while an independently addressable local bottom gate adjusts the carrier concentration in the CNT channel. This opto-electrically decoupled yet synergistic architecture enables high responsivity (>10 A/W), excellent room-temperature specific detectivity (10 Jones) under low-power IR illumination, and a wide dynamic range of 170 dB to 1650 nm infrared irradiation when biased in the subthreshold region. Furthermore, by leveraging gate-controllable and self-adaptive photoresponse, it is demonstrated in-sensor convolutional processing and image fusion at the device level. This dual-gate architecture provides a new pathway toward high-performance IR photodetectors with in-sensor computing capabilities, advancing their potential for next-generation machine vision systems.
碲化汞(HgTe)纳米晶体(NCs)具有可调节的吸收特性和可溶液处理的制造工艺,使其成为在宽红外(IR)光谱范围内实现低成本、高分辨率成像的有前途的材料。然而,基于HgTe NCs的光电探测器通常存在暗电流高、由陷阱态和界面缺陷引起的噪声升高以及结构可调性有限等问题,这些限制了它们的灵敏度、动态范围以及在智能视觉应用中的适用性。在此,报道了一种双栅碳纳米管(CNTs)场效应晶体管,其将基于HgTe NC的PIN异质结作为顶栅,将入射的红外光转换为用作动态光闸的光电压,而可独立寻址的局部底栅则调节CNT沟道中的载流子浓度。这种光电解耦但协同的架构实现了高响应度(>10 A/W)、在低功率红外照明下具有出色的室温比探测率(10 Jones),并且在亚阈值区域偏置时,对1650 nm红外辐射具有170 dB的宽动态范围。此外,通过利用栅极可控和自适应光响应,在器件层面展示了传感器内的卷积处理和图像融合。这种双栅架构为具有传感器内计算能力的高性能红外光电探测器提供了一条新途径,提升了它们在下一代机器视觉系统中的潜力。