Lamoot Alexander, Jangra Sonia, Laghlali Gabriel, Warang Prajakta, Singh Gagandeep, Chang Lauren A, Park Seok-Chan, Singh Gagandeep, De Swarte Kim, Zhong Zifu, Louage Benoit, De Lombaerde Emily, Ye Tingting, Chen Yong, Cuadrado-Castano Sara, Lienenklaus Stefan, Sanders Niek N, Lambrecht Bart N, García-Sastre Adolfo, Schotsaert Michael, De Geest Bruno G
Department of Pharmaceutics, Ghent University, Ghent, 9000, Belgium.
Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Small. 2024 Mar;20(10):e2306892. doi: 10.1002/smll.202306892. Epub 2023 Oct 22.
Poly(I:C) is a synthetic analogue of dsRNA capable of activating both TLR3 and RLRs, such as MDA-5 and RIG-I, as pathogen recognition receptors. While poly(I:C) is known to provoke a robust type I IFN, type III IFN, and Th1 cytokine response, its therapeutic use as a vaccine adjuvant is limited due to its vulnerability to nucleases and poor uptake by immune cells. is encapsulated poly(I:C) into lipid nanoparticles (LNPs) containing an ionizable cationic lipid that can electrostatically interact with poly(I:C). LNP-formulated poly(I:C) triggered both lysosomal TLR3 and cytoplasmic RLRs, in vitro and in vivo, whereas poly(I:C) in an unformulated soluble form only triggered endosomal-localized TLR3. Administration of LNP-formulated poly(I:C) in mouse models led to efficient translocation to lymphoid tissue and concurrent innate immune activation following intramuscular (IM) administration, resulting in a significant increase in innate immune activation compared to unformulated soluble poly(I:C). When used as an adjuvant for recombinant full-length SARS-CoV-2 spike protein, LNP-formulated poly(I:C) elicited potent anti-spike antibody titers, surpassing those of unformulated soluble poly(I:C) by orders of magnitude and offered complete protection against a SARS-CoV-2 viral challenge in vivo, and serum from these mice are capable of significantly reducing viral infection in vitro.
聚肌胞苷酸(Poly(I:C))是双链RNA的合成类似物,能够激活作为病原体识别受体的Toll样受体3(TLR3)和视黄酸诱导基因样受体(RLRs),如黑色素瘤分化相关基因5(MDA-5)和维甲酸诱导基因I(RIG-I)。虽然已知聚肌胞苷酸能引发强烈的I型干扰素、III型干扰素和Th1细胞因子反应,但其作为疫苗佐剂的治疗用途受到限制,因为它易受核酸酶影响且免疫细胞摄取不良。将聚肌胞苷酸封装到含有可电离阳离子脂质的脂质纳米颗粒(LNPs)中,这种阳离子脂质可与聚肌胞苷酸发生静电相互作用。脂质纳米颗粒配方的聚肌胞苷酸在体外和体内均能激活溶酶体TLR3和细胞质RLRs,而未配方的可溶性聚肌胞苷酸仅能激活内体定位的TLR3。在小鼠模型中肌肉注射脂质纳米颗粒配方的聚肌胞苷酸后,能有效转运至淋巴组织并同时激活先天免疫,与未配方的可溶性聚肌胞苷酸相比,先天免疫激活显著增加。当用作重组全长严重急性呼吸综合征冠状病毒2(SARS-CoV-2)刺突蛋白的佐剂时,脂质纳米颗粒配方的聚肌胞苷酸能引发强效的抗刺突抗体滴度,比未配方的可溶性聚肌胞苷酸高出几个数量级,并在体内提供针对SARS-CoV-2病毒攻击的完全保护,且这些小鼠的血清在体外能够显著降低病毒感染。