Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States.
Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States.
ACS Nano. 2024 May 7;18(18):11631-11643. doi: 10.1021/acsnano.3c06225. Epub 2024 Apr 23.
Pharmacological activation of the retinoic acid-inducible gene I (RIG-I) pathway holds promise for increasing tumor immunogenicity and improving the response to immune checkpoint inhibitors (ICIs). However, the potency and clinical efficacy of 5'-triphosphate RNA (3pRNA) agonists of RIG-I are hindered by multiple pharmacological barriers, including poor pharmacokinetics, nuclease degradation, and inefficient delivery to the cytosol where RIG-I is localized. Here, we address these challenges through the design and evaluation of ionizable lipid nanoparticles (LNPs) for the delivery of 3p-modified stem-loop RNAs (SLRs). Packaging of SLRs into LNPs (SLR-LNPs) yielded surface charge-neutral nanoparticles with a size of ∼100 nm that activated RIG-I signaling in vitro and in vivo. SLR-LNPs were safely administered to mice via both intratumoral and intravenous routes, resulting in RIG-I activation in the tumor microenvironment (TME) and the inhibition of tumor growth in mouse models of poorly immunogenic melanoma and breast cancer. Significantly, we found that systemic administration of SLR-LNPs reprogrammed the breast TME to enhance the infiltration of CD8 and CD4 T cells with antitumor function, resulting in enhanced response to αPD-1 ICI in an orthotopic EO771 model of triple-negative breast cancer. Therapeutic efficacy was further demonstrated in a metastatic B16.F10 melanoma model, with systemically administered SLR-LNPs significantly reducing lung metastatic burden compared to combined αPD-1 + αCTLA-4 ICI. Collectively, these studies have established SLR-LNPs as a translationally promising immunotherapeutic nanomedicine for potent and selective activation of RIG-I with the potential to enhance response to ICIs and other immunotherapeutic modalities.
激动视黄酸诱导基因 I(RIG-I)通路的药理学激活有望提高肿瘤免疫原性并改善对免疫检查点抑制剂(ICI)的反应。然而,RIG-I 的 5'-三磷酸 RNA(3pRNA)激动剂的效力和临床疗效受到多种药理学障碍的限制,包括药代动力学差、核酸酶降解和向 RIG-I 定位的细胞质中的有效递呈。在这里,我们通过设计和评估用于递送 3p 修饰的茎环 RNA(SLR)的可离子化脂质纳米颗粒(LNP)来解决这些挑战。将 SLR 包装到 LNP 中(SLR-LNP)得到了约 100nm 的表面电荷中性纳米颗粒,该纳米颗粒在体外和体内均能激活 RIG-I 信号转导。SLR-LNP 通过肿瘤内和静脉内途径安全地施用于小鼠,导致肿瘤微环境(TME)中的 RIG-I 激活,并抑制免疫原性差的黑色素瘤和乳腺癌小鼠模型中的肿瘤生长。值得注意的是,我们发现全身给予 SLR-LNP 可重新编程乳腺 TME,以增强具有抗肿瘤功能的 CD8 和 CD4 T 细胞的浸润,从而增强对αPD-1 ICI 的反应,在三阴性乳腺癌的 EO771 模型中得到了证实。在转移性 B16.F10 黑色素瘤模型中进一步证明了治疗功效,与联合给予αPD-1 + αCTLA-4 ICI 相比,系统给予 SLR-LNP 可显著降低肺部转移负担。总之,这些研究确立了 SLR-LNP 作为一种有前途的转化免疫治疗纳米药物,可有效和选择性地激活 RIG-I,具有增强对 ICI 和其他免疫治疗方式的反应的潜力。