Suppr超能文献

采用集成方法对肯尼亚北部非洲水牛的栖息地适宜性进行建模。

Habitat suitability modelling for the African buffaloes in Northern Kenya using an ensemble approach.

作者信息

Mwaniki Marion Warau, Ngigi Moses Murimi, Kuria Bartholomew Thiong'o, Mwungu Collins Mwange

机构信息

Institute of Geomatics, GIS and Remote Sensing, Dedan Kimathi University of Technology, Nyeri, Kenya.

Department of Geospatial and Space Technology, University of Nairobi, Nairobi, Kenya.

出版信息

Environ Monit Assess. 2025 Jul 1;197(7):833. doi: 10.1007/s10661-025-14296-9.

Abstract

Wildlife conservation relies heavily on the identification and mapping of species' geographic distributions. Many species face habitat loss and even extinction due to an increasingly fragile climate and the threat of human-induced changes. This study aims to model suitable habitats for African buffaloes using an ensemble approach. The datasets used include bioclimatic variables (temperature and precipitation), land use and land cover, normalised difference vegetation index, normalised difference built-up index, slope, proximity to settlements, and proximity to water sources. Multicollinearity analysis was used to test the correlation among the variables. An ensemble model predicting suitable habitats for the African buffaloes for the wet season (MAM) and dry season (JAS) in 2009, 2016, and 2023 was created by taking the geometric mean of three independent models: maximum entropy, random forest, and support vector machine. Results indicated that temperature and precipitation contributed the most during the modelling process. The results further indicated that from 2009 to 2023, the areal percentage of high and moderate potential areas reduced by 4.3% (158.13 km) and 30.5% (1071.43 km), respectively, while low potential areas increased by 2.2% (1229.56 km) in MAM. Additionally, high and moderate potential areas decreased by 4.9% (177.88 km) and 25.8% (966.16 km), respectively, while the low potential areas increased by 2.0% (1144.04 km) in JAS. The models' accuracy was evaluated using the area under curve (AUC), yielding AUC scores ≥ 0.96 for both seasons in each epoch, which was good. These results are valuable in supporting the conservation of buffaloes under changing climatic and environmental conditions.

摘要

野生动物保护在很大程度上依赖于对物种地理分布的识别和绘图。由于气候日益脆弱以及人为变化的威胁,许多物种面临栖息地丧失甚至灭绝的困境。本研究旨在采用一种集成方法为非洲水牛模拟适宜栖息地。所使用的数据集包括生物气候变量(温度和降水)、土地利用和土地覆盖、归一化植被指数、归一化建筑指数、坡度、与定居点的距离以及与水源的距离。采用多重共线性分析来检验变量之间的相关性。通过取三个独立模型(最大熵模型、随机森林模型和支持向量机模型)的几何平均值,创建了一个预测2009年、2016年和2023年非洲水牛湿季(3 - 5月)和干季(7 - 9月)适宜栖息地的集成模型。结果表明,在建模过程中温度和降水的贡献最大。结果还表明,从2009年到2023年,在湿季,高潜力和中潜力区域的面积百分比分别减少了4.3%(158.13平方千米)和30.5%(1071.43平方千米),而低潜力区域增加了2.2%(1229.56平方千米)。此外,在干季,高潜力和中潜力区域分别减少了4.9%(177.88平方千米)和25.8%(966.16平方千米),而低潜力区域增加了2.0%(1144.04平方千米)。使用曲线下面积(AUC)评估模型的准确性,每个时期两个季节的AUC得分均≥0.96,效果良好。这些结果对于在不断变化的气候和环境条件下支持水牛保护具有重要价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验