Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK.
Department of Mathematics, University College London, London, WC1E 6BT, UK.
Bull Math Biol. 2023 Oct 12;85(11):113. doi: 10.1007/s11538-023-01218-4.
Computing has revolutionised the study of complex nonlinear systems, both by allowing us to solve previously intractable models and through the ability to visualise solutions in different ways. Using ubiquitous computing infrastructure, we provide a means to go one step further in using computers to understand complex models through instantaneous and interactive exploration. This ubiquitous infrastructure has enormous potential in education, outreach and research. Here, we present VisualPDE, an online, interactive solver for a broad class of 1D and 2D partial differential equation (PDE) systems. Abstract dynamical systems concepts such as symmetry-breaking instabilities, subcritical bifurcations and the role of initial data in multistable nonlinear models become much more intuitive when you can play with these models yourself, and immediately answer questions about how the system responds to changes in parameters, initial conditions, boundary conditions or even spatiotemporal forcing. Importantly, VisualPDE is freely available, open source and highly customisable. We give several examples in teaching, research and knowledge exchange, providing high-level discussions of how it may be employed in different settings. This includes designing web-based course materials structured around interactive simulations, or easily crafting specific simulations that can be shared with students or collaborators via a simple URL. We envisage VisualPDE becoming an invaluable resource for teaching and research in mathematical biology and beyond. We also hope that it inspires other efforts to make mathematics more interactive and accessible.
计算已经彻底改变了对复杂非线性系统的研究,既可以通过解决以前难以解决的模型,也可以通过以不同方式可视化解决方案。利用无处不在的计算基础设施,我们提供了一种更进一步的方法,通过即时和交互式探索,利用计算机来理解复杂模型。这种无处不在的基础设施在教育、外展和研究方面具有巨大的潜力。在这里,我们展示了 VisualPDE,这是一个用于广泛的 1D 和 2D 偏微分方程 (PDE) 系统的在线交互式求解器。当你可以自己使用这些模型,并立即回答有关系统如何响应参数、初始条件、边界条件甚至时空强迫变化的问题时,抽象的动力系统概念,如对称破缺不稳定性、亚临界分岔以及多稳非线性模型中初始数据的作用,就会变得更加直观。重要的是,VisualPDE 是免费的、开源的,并且高度可定制。我们在教学、研究和知识交流方面提供了几个示例,提供了关于如何在不同环境中使用它的高级讨论。这包括围绕交互式模拟设计基于网络的课程材料,或者轻松制作可以通过简单的 URL 与学生或合作者共享的特定模拟。我们设想 VisualPDE 将成为数学生物学及其他领域教学和研究的宝贵资源。我们也希望它能激发其他使数学更具交互性和可访问性的努力。