Kannan Sudharsan, Kasberg William, Ernandez Liliana R, Audhya Anjon, Robertson Gail A
Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705.
Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706.
Proc Natl Acad Sci U S A. 2025 Jul 8;122(27):e2500218122. doi: 10.1073/pnas.2500218122. Epub 2025 Jul 1.
Mechanisms underlying heterotypic subunit assembly of ion channels and other oligomeric complexes are poorly understood. In the human heart, heteromeric assembly of two isoforms encoded by the () is essential for the normal function of cardiac I in ventricular repolarization, with loss of hERG1b contributing to arrhythmias associated with long QT-syndrome (LQTS). While hERG1a homomers traffic efficiently to the plasma membrane, hERG1b homomers are retained in the endoplasmic reticulum (ER). When expressed together, the two subunits avidly associate during biogenesis. Seeking rules specifying heteromeric association, we characterized the fate of hERG1b proteins using confocal and superresolution imaging in fixed and live HeLa cells. We found hERG1b sequestered in punctate intracellular structures when expressed alone in HeLa cells. These puncta, which depend on the presence of an N-terminal "RXR" ER retention signal, represent a privileged ER subcompartment distinct from that containing ER-retained, type 2 (hERG-based) LQTS mutant proteins, which were rapidly degraded by the proteasome. Introducing hERG1a to cells with preformed hERG1b puncta dissolved these puncta by rescuing extant hERG1b. Rescue occurred by association of fully translated hERG1b with 1a, a surprising finding given previous studies demonstrating cotranslational heteromeric association. We propose that sequestration limits potentially deleterious surface expression of hERG1b homomeric channels while preserving hERG1b for an alternative mode of heteromeric hERG1a/1b channel assembly posttranslationally. These findings reveal a surprising versatility of biosynthetic pathways promoting heteromeric assembly.
离子通道和其他寡聚复合物异型亚基组装的潜在机制目前仍知之甚少。在人类心脏中,由()编码的两种异构体的异源组装对于心脏I在心室复极化中的正常功能至关重要,hERG1b的缺失会导致与长QT综合征(LQTS)相关的心律失常。虽然hERG1a同聚体能够有效地转运到质膜,但hERG1b同聚体则保留在内质网(ER)中。当共同表达时,这两个亚基在生物合成过程中会强烈结合。为了寻找指定异源结合的规则,我们在固定和活的HeLa细胞中使用共聚焦和超分辨率成像对hERG1b蛋白的命运进行了表征。我们发现,当hERG1b在HeLa细胞中单独表达时,它会被隔离在点状的细胞内结构中。这些斑点依赖于N端“RXR”内质网保留信号的存在,代表了一个特殊的内质网亚区,与含有内质网保留的2型(基于hERG的)LQTS突变蛋白的亚区不同,后者会被蛋白酶体迅速降解。将hERG1a引入预先形成hERG1b斑点的细胞中,通过拯救现存的hERG1b来溶解这些斑点。拯救是通过完全翻译的hERG1b与1a的结合发生的,鉴于之前的研究表明是共翻译异源结合,这一发现令人惊讶。我们提出,隔离限制了hERG1b同聚通道潜在有害的表面表达,同时保留hERG1b以便在翻译后以另一种异源hERG1a/1b通道组装模式使用。这些发现揭示了促进异源组装的生物合成途径具有惊人的多样性。