Kannan Sudharsan, Kasberg William, Ernandez Liliana R, Audhya Anjon, Robertson Gail A
Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.
Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706.
bioRxiv. 2025 Jan 31:2025.01.30.635714. doi: 10.1101/2025.01.30.635714.
Mechanisms underlying heterotypic subunit assembly of ion channels and other oligomeric assemblies are poorly understood. In the human heart, heteromeric assembly of two isoforms encoded by the () is essential for the normal function of cardiac I in ventricular repolarization, with loss of hERG1b contributing to arrhythmias associated with long QT-syndrome. While hERG1a homomers traffic efficiently to the plasma membrane, hERG1b homomers are retained in the endoplasmic reticulum (ER). When expressed together, the two subunits avidly associate during biogenesis. Seeking rules specifying heteromeric association, we characterized the fate of hERG1b proteins using confocal and superresolution imaging in fixed and live HeLa cells. We found hERG1b sequestered in punctate intracellular structures when expressed alone in HeLa cells. These puncta, driven by an N-terminal "RXR" ER retention signal and phase separation, are distinct from other membranous compartments and proteasomal degradation pathways. The puncta represent a privileged ER sub-compartment distinct from that of ER-retained, type 2 (hERG-based) LQTS mutant proteins, which were rapidly degraded by the proteasome. Introducing hERG1a to cells with preformed hERG1b puncta dissolved these puncta by rescuing extant hERG1b. Rescue occurs by association of fully translated hERG1b with 1a, a surprising finding given previous studies demonstrating cotranslational heteromeric association. We propose that sequestration limits potentially deleterious surface expression of hERG1b homomeric channels while preserving hERG1b for an alternative mode of heteromeric hERG1a/1b channel assembly post-translationally. These findings reveal a surprising versatility of biosynthetic pathways promoting heteromeric assembly.
离子通道和其他寡聚体组装的异型亚基组装的潜在机制尚不清楚。在人类心脏中,由()编码的两种异构体的异源组装对于心脏I在心室复极化中的正常功能至关重要,hERG1b的缺失会导致与长QT综合征相关的心律失常。虽然hERG1a同聚体有效地运输到质膜,但hERG1b同聚体保留在内质网(ER)中。当一起表达时,这两个亚基在生物发生过程中强烈结合。为了寻找指定异源结合的规则,我们在固定和活的HeLa细胞中使用共聚焦和超分辨率成像来表征hERG1b蛋白的命运。我们发现,当单独在HeLa细胞中表达时,hERG1b被隔离在点状细胞内结构中。这些点状结构由N端“RXR”内质网保留信号和相分离驱动,与其他膜性区室和蛋白酶体降解途径不同。这些点状结构代表了一个特殊的内质网亚区室,与内质网保留的2型(基于hERG的)LQTS突变蛋白不同,后者被蛋白酶体迅速降解。将hERG1a引入预先形成hERG1b点状结构的细胞中,通过拯救现存的hERG1b来溶解这些点状结构。拯救是通过完全翻译的hERG1b与1a结合发生的,鉴于先前的研究表明是共翻译异源结合,这是一个令人惊讶的发现。我们提出,隔离限制了hERG1b同聚体通道潜在有害的表面表达,同时保留hERG1b用于翻译后异源hERG1a/1b通道组装的另一种模式。这些发现揭示了促进异源组装的生物合成途径的惊人多功能性。