Zhu Ying, Duan Haiyan, Gruber Christoph G, Qu Wenqiang, Zhang Hui, Wang Zhenlin, Zhong Jian, Zhang Xinhe, Han Lupeng, Cheng Danhong, Medina Dana D, Cortés Emiliano, Zhang Dengsong
International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität (LMU), Munich, 80539, Germany.
Angew Chem Int Ed Engl. 2025 Mar 10;64(11):e202421821. doi: 10.1002/anie.202421821. Epub 2025 Jan 8.
Electrocatalytic nitrate reduction (NORR) is a promising method for pollutant removal and ammonia synthesis and involves the transfer of eight electrons and nine protons. As such, the rational design of catalytic interfaces with enhanced mass transfer is crucial for achieving high ammonia yield rates and Faradaic efficiency (FE). In this work, we incorporated a Cu-bipyridine catalytic interface and fabricated crystalline 2D covalent organic framework films with significantly exposed catalytic sites, leading to improved FE and ammonia yield (FE=92.7 %, NH yield rate=14.9 mg ⋅ hcm in 0.5 M nitrate) compared to bulk catalysts and outperforming most reported NORR electrocatalysts. The film-like morphology enhances mass transfer across the Cu-bipyridine interface, resulting in superior catalytic performance. We confirmed the reaction pathway and mechanism through in situ characterizations and theoretical calculations. The Cu sites act as primary centers for adsorption and activation, while the bipyridine sites facilitate water adsorption and dissociation, supplying sufficient H* and accelerating proton-coupled electron transfer kinetics. This study provides a viable strategy to enhance mass transfer at the catalytic interface through rational morphology control, boosting the intrinsic activity of catalysts in the NORR process.
电催化硝酸盐还原(NORR)是一种很有前景的污染物去除和氨合成方法,涉及八个电子和九个质子的转移。因此,合理设计具有增强传质性能的催化界面对于实现高氨产率和法拉第效率(FE)至关重要。在这项工作中,我们引入了铜 - 联吡啶催化界面,并制备了具有显著暴露催化位点的结晶二维共价有机框架薄膜,与块状催化剂相比,其法拉第效率和氨产率得到了提高(FE = 92.7%,在0.5 M硝酸盐中氨产率为14.9 mg·h·cm),并且优于大多数已报道的NORR电催化剂。薄膜状形态增强了通过铜 - 联吡啶界面的传质,从而产生了优异的催化性能。我们通过原位表征和理论计算确定了反应途径和机理。铜位点作为吸附和活化的主要中心,而联吡啶位点促进水的吸附和解离,提供足够的H*并加速质子耦合电子转移动力学。这项研究提供了一种可行的策略,通过合理的形态控制来增强催化界面处的传质,提高NORR过程中催化剂的本征活性。