Halmich Christina, Höschler Lucas, Schranz Christoph, Borgelt Christian
Department of Artificial Intelligence and Human Interfaces, Paris-Lodron-University Salzburg, Salzburg, Austria.
Salzburg Research Forschungsgesellschaft mbH, Salzburg, Austria.
PLoS One. 2025 Jul 1;20(7):e0327038. doi: 10.1371/journal.pone.0327038. eCollection 2025.
The integration of machine learning and deep learning methodologies has transformed data analytics in biomechanics. However, the field faces challenges such as limited large-scale data sets, high data acquisition costs, and restricted participant access that hinder the development of robust algorithms. Additional issues include variability in sensor placement, soft tissue artifacts, and low diversity in movement patterns. These challenges make it difficult to train models that perform reliably across individuals, tasks, and settings. Data augmentation can help address these limitations, but its use in biomechanical time-series data remains insufficiently evaluated.
This scoping review on data augmentation for biomechanical time-series data focuses on examining current techniques, evaluating their effectiveness, and offering recommendations for their application.
Four online databases (PubMed, IEEE Xplore, Scopus, and Web of Science) were used to find studies published between 2013 and 2024. Following PRISMA-ScR guidelines, two screening processes were conducted to identify relevant publications.
21 publications were identified as relevant. There is no universal best practice for augmenting biomechanical time-series data; instead, methods vary based on study aims. A key issue identified is the absence of soft tissue artifacts in synthetic data, leading to discrepancies and emphasizing the need for realistic techniques. Furthermore, many studies lack proper evaluation of augmentation methods, making it difficult to understand the effects of different techniques. This understanding is crucial for assessing the impact of the augmented data set on downstream models and evaluating the quality of the data augmentation process.
This review highlights the importance of data augmentation in addressing limited data availability and improving model generalization in biomechanics. Tailoring augmentation to data characteristics can enhance the performance and relevance of predictive models. However, understanding how different augmentation techniques impact data quality and downstream performance remains essential for developing better methods.
机器学习和深度学习方法的整合改变了生物力学中的数据分析。然而,该领域面临着一些挑战,如大规模数据集有限、数据采集成本高以及参与者获取受限,这些都阻碍了强大算法的发展。其他问题包括传感器放置的变异性、软组织伪影以及运动模式的低多样性。这些挑战使得难以训练在个体、任务和环境中都能可靠运行的模型。数据增强有助于解决这些限制,但其在生物力学时间序列数据中的应用仍未得到充分评估。
本次关于生物力学时间序列数据增强的范围综述重点在于研究当前技术、评估其有效性,并为其应用提供建议。
使用四个在线数据库(PubMed、IEEE Xplore、Scopus和Web of Science)查找2013年至2024年期间发表的研究。遵循PRISMA - ScR指南,进行了两个筛选过程以识别相关出版物。
确定了21篇相关出版物。对于增强生物力学时间序列数据,没有通用的最佳实践;相反,方法因研究目的而异。确定的一个关键问题是合成数据中不存在软组织伪影,这导致了差异,并强调了对现实技术的需求。此外,许多研究缺乏对增强方法的适当评估,这使得难以理解不同技术的效果。这种理解对于评估增强数据集对下游模型的影响以及评估数据增强过程的质量至关重要。
本综述强调了数据增强在解决生物力学中有限的数据可用性和提高模型泛化能力方面的重要性。根据数据特征定制增强可以提高预测模型的性能和相关性。然而,了解不同的增强技术如何影响数据质量和下游性能对于开发更好的方法仍然至关重要。