Suppr超能文献

模拟人类行走:一种基于模型的强化学习方法与肌肉骨骼建模

Simulating human walking: a model-based reinforcement learning approach with musculoskeletal modeling.

作者信息

Su Binbin, Gutierrez-Farewik Elena M

机构信息

KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden.

Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.

出版信息

Front Neurorobot. 2023 Oct 12;17:1244417. doi: 10.3389/fnbot.2023.1244417. eCollection 2023.

Abstract

INTRODUCTION

Recent advancements in reinforcement learning algorithms have accelerated the development of control models with high-dimensional inputs and outputs that can reproduce human movement. However, the produced motion tends to be less human-like if algorithms do not involve a biomechanical human model that accounts for skeletal and muscle-tendon properties and geometry. In this study, we have integrated a reinforcement learning algorithm and a musculoskeletal model including trunk, pelvis, and leg segments to develop control modes that drive the model to walk.

METHODS

We simulated human walking first without imposing target walking speed, in which the model was allowed to settle on a stable walking speed itself, which was 1.45 /. A range of other speeds were imposed for the simulation based on the previous self-developed walking speed. All simulations were generated by solving the Markov decision process problem with covariance matrix adaptation evolution strategy, without any reference motion data.

RESULTS

Simulated hip and knee kinematics agreed well with those in experimental observations, but ankle kinematics were less well-predicted.

DISCUSSION

We finally demonstrated that our reinforcement learning framework also has the potential to model and predict pathological gait that can result from muscle weakness.

摘要

引言

强化学习算法的最新进展加速了具有高维输入和输出的控制模型的开发,这些模型能够重现人类运动。然而,如果算法不涉及考虑骨骼和肌腱特性及几何形状的生物力学人体模型,所产生的运动往往就不太像人类的运动。在本研究中,我们整合了一种强化学习算法和一个包括躯干、骨盆及腿部节段的肌肉骨骼模型,以开发驱动该模型行走的控制模式。

方法

我们首先在不设定目标步行速度的情况下模拟人类行走,在此过程中模型可自行稳定在一个步行速度上,该速度为1.45米/秒。基于先前自行得出的步行速度,为模拟设定了一系列其他速度。所有模拟均通过使用协方差矩阵自适应进化策略解决马尔可夫决策过程问题生成,无需任何参考运动数据。

结果

模拟得到的髋部和膝部运动学与实验观察结果吻合良好,但踝部运动学的预测效果较差。

讨论

我们最终证明,我们的强化学习框架也有潜力对因肌肉无力导致的病理性步态进行建模和预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95fe/10601656/9c2ac6b2c26e/fnbot-17-1244417-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验