Suppr超能文献

与晚发型阿尔茨海默病风险相关的血浆脂质组轨迹:一项纵向队列研究。

Trajectory of plasma lipidome associated with the risk of late-onset Alzheimer's disease: a longitudinal cohort study.

作者信息

Wang Tingting, Arnold Matthias, Huynh Kevin, Weinisch Patrick, Giles Corey, Mellett Natalie A, Duong Thy, Marella Bharadwaj, Nho Kwangsik, De Livera Alysha, Han Xianlin, Blach Colette, Yu Chenglong, McNeil John J, Lacaze Paul, Saykin Andrew J, Kastenmüller Gabi, Meikle Peter J, Kaddurah-Daouk Rima

机构信息

Baker Heart and Diabetes Institute, Melbourne, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia.

Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.

出版信息

EBioMedicine. 2025 Jun 30;118:105826. doi: 10.1016/j.ebiom.2025.105826.

Abstract

BACKGROUND

Comprehensive lipidomic studies have demonstrated strong cross-sectional associations between the blood lipidome and late-onset Alzheimer's disease (AD) dementia and its risk factors, yet the longitudinal relationship between lipidome changes and AD progression remains unclear.

METHODS

We employed longitudinal lipidomic profiling on 4730 plasma samples from 1517 participants of the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort to investigate the temporal evolution of lipidomes among diagnostic groups. At baseline (n = 1393), participants were classified as stable diagnosis status including stable AD (n = 243), stable cognitive normal (CN; n = 337), and stable mild cognitive impairment (MCI; n = 413), or converters (AD converters: n = 329; MCI converters: n = 71). We developed a dementia risk classification model to stratify the non-converting MCI group into dementia-like and non-dementia-like MCI based on their baseline lipidomic profiles, aiming to identify early metabolic signatures predictive of dementia progression.

FINDINGS

Longitudinal analysis identified significant associations between the change in ether lipid species (including alkylphosphatidylcholine, alkenylphosphatidylcholine, lysoalkylphosphatidylcholine, and lysoalkenylphosphatidylcholine) and AD dementia conversion. Specifically, AD dementia converters show a 3-4.8% reduction in these ether lipid species compared to the non-converting CN and MCI groups, suggesting metabolic dysregulation as a key feature of AD progression. Further, The Dementia Risk Model effectively distinguished MCI from AD dementia converters (AUC = 0.70; 95% CI: 0.66-0.74). Within the MCI group, the model identified a high-risk subgroup with a twofold higher likelihood of conversion to AD dementia compared to the low-risk group. External validation in the ASPREE cohort confirmed its predictive utility, with the Dementia Risk Score discriminating incident dementia from cognitively normal individuals (C-index = 0.75, 95% CI: 0.73-0.78), improving prediction by 2% over the combination of traditional risk factors and APOE genetic risk factor. Additionally, the Dementia Risk Score was significantly associated with reduced temporal lobar fludeoxyglucose uptake (β = -0.286, p = 1.34 × 10), higher amyloid PET levels (β = 0.308, p = 4.03 × 10), and elevated p-tau levels (β = 0.167, p = 2.37 × 10), reinforcing its pathophysiological relevance in tracking neurodegeneration, amyloid burden, and tau pathology.

INTERPRETATION

These findings highlight lipidomic profiling as a potential blood-based biomarker for identifying individuals at high risk of AD progression, offering a scalable, non-invasive approach for early detection, risk stratification, and targeted interventions in AD.

FUNDING

The National Health and Medical Research Council of Australia (#1101320 and #1157607); NHMRC Investigator grant (#GNT1197190); Victorian Government's Operational Infrastructure Support Program; National Heart Foundation of Australia, Future Leader Fellowship (#102604), and National Health and Medical Research Council Investigator Grant (#2026325); Investigator grant (#2009965) from the National Health and Medical Research Council of Australia; a National Health and Medical Research Council of Australia Senior Research Fellowship (#1042095); National Institutes of Health grants: P30AG010133, P30AG072976, R01AG019771, R01AG057739, U19AG024904, R01LM013463, R01AG068193, T32AG071444, U01AG068057, U01AG072177, U19AG074879, R01AG069901, R01AG046171, RF1AG051550, RF1AG057452; National Institutes of Health/National Institute on Aging grants RF1AG058942, RF1AG059093, U01AG061359, U19AG063744, and R01AG081322, NIH/NLM R01LM012535; FNIH: DAOU16AMPA.

摘要

背景

全面的脂质组学研究已证明血液脂质组与晚发型阿尔茨海默病(AD)痴呆及其风险因素之间存在很强的横断面关联,但脂质组变化与AD进展之间的纵向关系仍不清楚。

方法

我们对阿尔茨海默病神经影像倡议(ADNI)队列中1517名参与者的4730份血浆样本进行了纵向脂质组学分析,以研究不同诊断组脂质组的时间演变。在基线时(n = 1393),参与者被分类为稳定诊断状态,包括稳定的AD(n = 243)、稳定的认知正常(CN;n = 337)和稳定的轻度认知障碍(MCI;n = 413),或转变者(AD转变者:n = 329;MCI转变者:n = 71)。我们开发了一种痴呆风险分类模型,根据非转变MCI组的基线脂质组学特征将其分层为痴呆样和非痴呆样MCI,旨在识别预测痴呆进展的早期代谢特征。

结果

纵向分析确定了醚脂类物质(包括烷基磷脂酰胆碱、烯基磷脂酰胆碱、溶血烷基磷脂酰胆碱和溶血烯基磷脂酰胆碱)的变化与AD痴呆转变之间存在显著关联。具体而言,与非转变的CN和MCI组相比,AD痴呆转变者的这些醚脂类物质减少了3 - 4.8%,表明代谢失调是AD进展的关键特征。此外,痴呆风险模型有效地将MCI与AD痴呆转变者区分开来(AUC = 0.70;95% CI:0.66 - 0.74)。在MCI组中,该模型识别出一个高风险亚组,其转变为AD痴呆的可能性是低风险组的两倍。在ASPREE队列中的外部验证证实了其预测效用,痴呆风险评分能够区分新发痴呆与认知正常个体(C指数 = 0.75,95% CI:0.73 - 0.78),比传统风险因素和APOE基因风险因素的组合提高了2%的预测能力。此外,痴呆风险评分与颞叶氟脱氧葡萄糖摄取减少(β = -0.286,p = 1.34 × 10)、淀粉样蛋白PET水平升高(β = 0.308,p = 4.03 × 10)和p - tau水平升高(β = 0.167,p = 2.37 × 10)显著相关,加强了其在跟踪神经退行性变、淀粉样蛋白负荷和tau病理方面的病理生理相关性。

解读

这些发现突出了脂质组学分析作为一种潜在的基于血液的生物标志物,用于识别AD进展高风险个体,为AD的早期检测、风险分层和靶向干预提供了一种可扩展的、非侵入性的方法。

资助

澳大利亚国家卫生与医学研究委员会(#1101320和#1157607);NHMRC研究员资助(#GNT1197190);维多利亚州政府的运营基础设施支持计划;澳大利亚国家心脏基金会,未来领袖奖学金(#102604),以及澳大利亚国家卫生与医学研究委员会研究员资助(#2026325);澳大利亚国家卫生与医学研究委员会的研究员资助(#2009965);澳大利亚国家卫生与医学研究委员会高级研究奖学金(#1042095);美国国立卫生研究院资助:P30AG010133、P30AG072976、R01AG019771、R01AG057739、U19AG024904、R01LM013463、R01AG068193、T32AG071444、U01AG068057、U01AG072177、U19AG074879、R01AG069901、R01AG046171、RF1AG051550、RF1AG057452;美国国立卫生研究院/美国国立衰老研究所资助RF1AG058942、RF1AG059093、U01AG061359、U19AG063744和R01AG081322,NIH/NLM R01LM012535;美国国立卫生研究院基金会:DAOU16AMPA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df6/12269576/b38a3dbe35d8/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验