Suppr超能文献

基于深度学习和进化计算的区块链增强物联网分布式拒绝服务检测

Blockchain enhanced distributed denial of service detection in IoT using deep learning and evolutionary computation.

作者信息

Prasad V V S H, Bavirthi Swathi Sowmya, Anupama C S S, Laxmi Lydia E, Kumar K Sathesh, Ammar Khalid, Ishak Mohamad Khairi

机构信息

Department of Mechanical Engineering, Institute of Aeronautical Engineering, Hyderabad, Telangana, India.

Department of IT, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad, 500075, India.

出版信息

Sci Rep. 2025 Jul 2;15(1):22537. doi: 10.1038/s41598-025-06568-8.

Abstract

The Internet of Things (IoT) is emerging as a new trend mainly employed in developing numerous vital applications. These applications endure on a federal storage framework primarily concerned with multiple issues. Blockchain technology (BC) is one of the supportive methods for developing IoT-based applications. It is employed to solve the problems encountered in IoT applications. The attack Distributed Denial of Service (DDoS) is one of the leading security attacks in IoT systems. Attackers can effortlessly develop the exposures of IoT gadgets and restrain them as fragments of botnets to commence DDoS threats. The IoT devices are said to be resource-constrained with computing resources and restricted memory. As a developing technology, BC holds the possibility of resolving security problems in IoT. This paper proposes the Metaheuristic-Optimized Blockchain Framework for Attack Detection using a Deep Learning Model (MOBCF-ADDLM) method. The main intention of the MOBCF-ADDLM method is to deliver an effective method for detecting DDoS threats in an IoT environment using advanced techniques. The BC technology is initially applied to mitigate DDoS attacks by presenting decentralized security solutions. Furthermore, data preprocessing utilizes the min-max scaling method to convert input data into a beneficial format. Additionally, feature selection (FS) is performed using the Aquila optimizer (AO) technique to recognize the most relevant features from input data. The attack classification process employs the deep belief network (DBN) technique. Finally, the red panda optimizer (RPO) model modifies the hyper-parameter values of the DBN model optimally and results in higher classification performance. A wide range of experiments with the MOBCF-ADDLM approach is performed under the BoT-IoT Binary and Multiclass datasets. The performance validation of the MOBCF-ADDLM approach portrayed a superior accuracy value of 99.22% over existing models.

摘要

物联网(IoT)正在成为一种新趋势,主要用于开发众多重要应用程序。这些应用程序依赖于一个主要涉及多个问题的联邦存储框架。区块链技术(BC)是开发基于物联网的应用程序的支持方法之一。它用于解决物联网应用中遇到的问题。分布式拒绝服务(DDoS)攻击是物联网系统中主要的安全攻击之一。攻击者可以轻松地发现物联网设备的漏洞,并将它们作为僵尸网络的一部分加以控制,从而发起DDoS威胁。据说物联网设备的计算资源和内存有限。作为一种发展中的技术,区块链有解决物联网安全问题的可能性。本文提出了一种基于深度学习模型的元启发式优化区块链攻击检测框架(MOBCF-ADDLM)方法。MOBCF-ADDLM方法的主要目的是使用先进技术提供一种在物联网环境中检测DDoS威胁的有效方法。区块链技术最初通过提供去中心化的安全解决方案来减轻DDoS攻击。此外,数据预处理使用最小-最大缩放方法将输入数据转换为有用的格式。此外,使用天鹰座优化器(AO)技术进行特征选择(FS),以从输入数据中识别最相关的特征。攻击分类过程采用深度信念网络(DBN)技术。最后,红熊猫优化器(RPO)模型对DBN模型的超参数值进行最优修改,从而获得更高的分类性能。在BoT-IoT二进制和多类数据集下,对MOBCF-ADDLM方法进行了广泛的实验。MOBCF-ADDLM方法的性能验证表明,其准确率高达99.22%,优于现有模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4281/12217754/f4cbdf65157e/41598_2025_6568_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验