Suppr超能文献

基于元启发式算法的特征选择与集成表示学习模型相结合,用于物联网环境中隐私感知的网络攻击检测。

Integration of metaheuristic based feature selection with ensemble representation learning models for privacy aware cyberattack detection in IoT environments.

作者信息

Karthikeyan M, Brindha R, Vianny Maria Manuel, Vaitheeshwaran V, Bachute Mrinal, Mishra Sanket, Dash Bibhuti Bhusan

机构信息

Department of Computing Technologies, School of Computing, SRM Institute of Science and Technology, Chennai, 603203, India.

Department of Artificial Intelligence and Data Science Panimalar Engineering College, Chennai, 600123, India.

出版信息

Sci Rep. 2025 Jul 2;15(1):22887. doi: 10.1038/s41598-025-05545-5.

Abstract

The Internet of Things (IoT) connects virtual and physical objects inserted with software, devices, and other technology that interchange data utilizing the Internet. It enables diverse devices and individuals to exchange data, interconnect, and personalize services to ease usage. Despite IoT's merits, rising cyberthreats and the rapid growth of smart devices increase the risk of data breaches and security attacks. The increasing complexity of cyberattacks demands advanced intrusion detection systems (IDS) to defend crucial assets and data. AI techniques such as machine learning (ML) and deep learning (DL) have shown robust potential in improving IDS performance by accurately detecting and classifying malicious network behavior in IoT environments. This manuscript proposes an Adaptive Metaheuristic-Based Feature Selection with Ensemble Learning Model for Privacy-Preserving Cyberattack Detection (AMFS-ELPPCD) technique. The data normalization stage initially applies Z-score normalization to convert input data into a beneficial format. The AMFS-ELPPCD model utilizes the adaptive Harris hawk optimization (AHHO) model for the feature process selection of the subset. Furthermore, ensemble models such as bidirectional gated recurrent unit (BiGRU), Wasserstein autoencoder (WAE), and deep belief network (DBN) are used for the classification process. Finally, social group optimization (SGO) optimally adjusts the ensemble classifiers' hyperparameter values, resulting in better classification performance. A set of simulations is performed to exhibit the promising results of the AMFS-ELPPCD under dual datasets. The experimental validation of the AMFS-ELPPCD technique portrayed a superior accuracy value of 99.44% and 98.85% under the CICIDS-2017 and NSLKDD datasets over existing models.

摘要

物联网(IoT)连接了插入软件、设备及其他技术的虚拟和物理对象,这些对象利用互联网交换数据。它使各种设备和个人能够交换数据、相互连接并个性化服务,以方便使用。尽管物联网有诸多优点,但网络威胁的增加和智能设备的快速增长,加大了数据泄露和安全攻击的风险。网络攻击日益复杂,需要先进的入侵检测系统(IDS)来保护关键资产和数据。机器学习(ML)和深度学习(DL)等人工智能技术在通过准确检测和分类物联网环境中的恶意网络行为来提高IDS性能方面展现出强大潜力。本文提出了一种基于自适应元启发式特征选择与集成学习模型的隐私保护网络攻击检测(AMFS-ELPPCD)技术。数据归一化阶段首先应用Z分数归一化将输入数据转换为有益的格式。AMFS-ELPPCD模型利用自适应哈里斯鹰优化(AHHO)模型进行子集的特征过程选择。此外,双向门控循环单元(BiGRU)、瓦瑟斯坦自动编码器(WAE)和深度信念网络(DBN)等集成模型用于分类过程。最后,社会群体优化(SGO)对集成分类器的超参数值进行优化调整,从而获得更好的分类性能。进行了一组模拟,以展示AMFS-ELPPCD在双数据集下的良好结果。AMFS-ELPPCD技术的实验验证表明,在CICIDS-2017和NSLKDD数据集下,其准确率分别高达99.44%和98.85%,优于现有模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fba3/12217269/fb361d9b7d1a/41598_2025_5545_Fig1_HTML.jpg

相似文献

8
Smart deep learning model for enhanced IoT intrusion detection.
Sci Rep. 2025 Jul 1;15(1):20577. doi: 10.1038/s41598-025-06363-5.
9
Improved model for intrusion detection in the Internet of Things.
Sci Rep. 2025 Jul 1;15(1):21547. doi: 10.1038/s41598-025-92852-6.

本文引用的文献

1
LSTM-JSO framework for privacy preserving adaptive intrusion detection in federated IoT networks.
Sci Rep. 2025 Apr 2;15(1):11321. doi: 10.1038/s41598-025-95966-z.
2
Stacking Ensemble Deep Learning for Real-Time Intrusion Detection in IoMT Environments.
Sensors (Basel). 2025 Jan 22;25(3):624. doi: 10.3390/s25030624.
3
Deterministic Autoencoder using Wasserstein loss for tabular data generation.
Neural Netw. 2025 May;185:107208. doi: 10.1016/j.neunet.2025.107208. Epub 2025 Jan 29.
4
Deep Complex Gated Recurrent Networks-Based IoT Network Intrusion Detection Systems.
Sensors (Basel). 2024 Sep 13;24(18):5933. doi: 10.3390/s24185933.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验