Suppr超能文献

用于增强物联网入侵检测的智能深度学习模型。

Smart deep learning model for enhanced IoT intrusion detection.

作者信息

Alsubaei Faisal S

机构信息

Department of Cybersecurity, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia.

出版信息

Sci Rep. 2025 Jul 1;15(1):20577. doi: 10.1038/s41598-025-06363-5.

Abstract

Growing volumes and sensitivities of information in the growing IoT require strong cybersecurity measures to adequately counter increasingly sophisticated cyberattacks. Machine learning-based anomaly detection has the potential to be a viable solution through abnormal network traffic behavior identification that foretells intrusions. Existing approaches, however, are usually hampered by the inability to effectively counter the sophisticated and evolving nature of such threats, especially in preprocessing optimization and hyperparameter tuning, which typically adopt conventional machine learning and deep learning models. This paper addresses these limitations with large preprocessing steps followed by hyperparameter tuning of machine learning XGBoost and deep learning Sequential Neural Network (OSNN) algorithms through Grid Search for their best values to improve multiclass intrusion detection across varied datasets. These deep models were then augmented with a variety of various filters, kernels, activation functions, and regularization techniques in an attempt to boost them in detecting complex, multiclass intrusion patterns. The proposed system was tested comprehensively on three challenging datasets: NSL-KDD, UNSW-NB15, and CICIDS2017. The optimized XGBoost model worked exceptionally well on the NSL-KDD dataset with very high accuracy (99.93%), F1-score (99.84%), MCC (99.86%), and a very low FPR (0.0004). The optimized SNN model also performed well on the NSL-KDD dataset with an accuracy of 99.0% and an AUC of 1.00. Also, the OSNN model performed very well on UNSW-NB15 dataset with an accuracy of 96.80% and a loss of 0.0777, as well as on the CICIDS-2017 dataset with an accuracy of 99.53% and a loss of 0.0236. This superb performance of the OSNN model can be explained by the careful optimization of hyperparameters like strong activation functions (ReLU, GeLU, LeakyReLU), learning rates, dropout rates, and regularization techniques that enable it to learn intricate intrusion patterns efficiently using various datasets. These results highlight the potential of our proposed method to enhance intrusion detection, system integrity, fraud prevention, and ultimately optimize overall network performance.

摘要

在不断发展的物联网中,信息量和敏感度日益增加,这就需要强大的网络安全措施来充分应对日益复杂的网络攻击。基于机器学习的异常检测有潜力成为一种可行的解决方案,通过识别异常网络流量行为来预测入侵。然而,现有方法通常因无法有效应对此类威胁的复杂性和不断演变的特性而受到阻碍,特别是在预处理优化和超参数调整方面,这些通常采用传统机器学习和深度学习模型。本文通过大量的预处理步骤来解决这些限制,随后通过网格搜索对机器学习XGBoost和深度学习顺序神经网络(OSNN)算法进行超参数调整,以找到它们的最佳值,从而改进跨不同数据集的多类入侵检测。然后,这些深度模型通过各种滤波器、内核、激活函数和正则化技术进行增强,试图提高它们检测复杂多类入侵模式的能力。所提出的系统在三个具有挑战性的数据集上进行了全面测试:NSL-KDD、UNSW-NB15和CICIDS2017。优化后的XGBoost模型在NSL-KDD数据集上表现出色,准确率非常高(99.93%),F1分数(99.84%),马修斯相关系数(MCC)(99.86%),误报率非常低(0.0004)。优化后的SNN模型在NSL-KDD数据集上也表现良好,准确率为99.0%,AUC为1.00。此外,OSNN模型在UNSW-NB15数据集上表现出色,准确率为96.80%,损失为0.0777,在CICIDS-2017数据集上准确率为99.53%,损失为0.0236。OSNN模型的这种卓越性能可以通过对超参数的精心优化来解释,如强大的激活函数(ReLU、GeLU、LeakyReLU)、学习率、丢弃率和正则化技术,这些使它能够使用各种数据集有效地学习复杂的入侵模式。这些结果突出了我们所提出方法在增强入侵检测、系统完整性、欺诈预防以及最终优化整体网络性能方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75d8/12215491/ad50c342c052/41598_2025_6363_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验